Intellicus Developers’ Guide

Version: 7.3

intellicu

ooooooooooooooooooooooooooooo

Copyright © 2015 Intellicus Technologies
This document and its content is copyrighted material of Intellicus Technologies.

The content may not be copied or derived from, through any means, in parts or in whole, without a prior
written permission from Intellicus Technologies. All other product names are believed to be registered
trademarks of the respective companies.

Dated: August 2015

Acknowledgements

Intellicus acknowledges using of third-party libraries to extend support to the functionalities that they
provide.

For details, visit: http://www.intellicus.com/acknowledgements.htm

http://www.intellicus.com/acknowledgements.htm

Contents

1Intellicus Integration Architectural Options 5
Integration Architectural Options 5
2HTTP API 12
Prerequisite 12
Method to get a token for Single Sign-On 13
Method to access HTTP API 13
CategoryList.jsp 13
ReportListForCategory.jsp 14
RepositoryExplorer.jsp 17
InteraController.jsp 18
OlapViewer.jsp 25
SavedReportList.jsp 29
Dashboard 32
AdhocWizard.jsp 34
SelectAdhocSource.jsp 34
AdhocVisualizer.jsp 35
QueryObjectList.jsp 36
ParameterObijectList.jsp 37
PrintSettingList.jsp 37
Preferences.jsp 38
3 RESTful API 39
Rest Integration Architecture 39
Response Code 40
Accessing the REST API 40
4 Java API 94
Java Doc 94
Mandatory Step to Use Java APIs 94
Use Cases 97
5 Callback API 192
SQL Filter 192

Authentication Check
Callback Events
6 JVista API
Standard API
Methods
Events
Code Sample
7 Appendix-1
Integration Flow

8 Appendix-2

197

202

272

272

272

276

277

279

279

288

1 Intellicus Integration Architectural Options

Intellicus Web Client supports all the Web servers and extensions that support JSP execution.

The Intellicus Web Client files include Intellicus Java Server Pages and Intellicus Java API packages. Other
supporting files include java script files, image files, property configuration files, etc.

These files are available at <Intellicus_Install_path>\Jakarta\webapps\intellicus.

Integration Architectural Options

There are two recommended methods for integrating Intellicus client into a host web application.
Intellicus portal can be run separately and can be interacted with HTTP calls, OR
Intellicus portal JSPs and JAVA APIs can be copied inside the HOST application server.

Note: The options are with integrating the client components. In either case, the
Report Server will run as a separate standalone server process.

Option-1: Intellicus Running on Separate Webserver

In this method Intellicus web client components are deployed in a separate application server and managed

separately.

The client components run in the memory space of a separate Jakarta TomCat JSP Server. During streaming
of report output to the browser, the client components won’t consume host applications’ threads,

temporary file space etc.

Still, this integration option can provide embedded reporting, by placing reporting output as an integral

part of the host application page.

~ Intellicus
~ Repository

| Report Layouts
on DB

Web Browser H
I/
H‘ /®

Web Browser P Reporting Calls

Figure 1: Integrating as a separate portal

Use cases (As numbered in the diagram)

1. Host application user login to their (Host) application.
User clicks Reports option for getting a report layout list etc. from the web browser and thus hit the
Intellicus portal.

3. Host application user access Client database for their normal actions other than reports.

4, Client application communicates with Intellicus JAVA APIs (includes intellica.jar, xerces.jar,
log4ij.jar, ReportClient.properties) deployed on Client app server in their class path.

5. Client uses Intellicus JAVA APIs for performing Intellicus administration task programmatically.

6. Intellicus portal communicates with report server for report execution, administration etc.

7. Intellicus report server communicates with Client database for fetching report layouts.(Intellicus
creates its own repository tables in the database)

8. Intellicus report server communicates with Client database and fetches data using report SQL from
Client database.

9. Host application user logs in through Intellicus portal for Admin Screens using Intellicus portal login
screen.

Deploying JSPs and SERVLETs
Step 1- Install Intellicus Report Server
Run Setup.exe and Install Intellicus Report Server.

You can install Intellicus Report Server on a separate machine or on the same machine as the host

application server is running.
The setup.exe installs the report server as well as the Intellicus client components.

Note: By default, Intellicus suite listens to HTTP requests on port 80. If this
number conflicts with any of host application port numbers, then either of ports
should be changed.

Step 2- Configure HTTP port number

Report Web Service will start automatically on port 80. To change Intellicus portal HTTP port number,

1. Goto [Intellicus_Install_path]\Program File \Intellicus\Jakarta\conf
2. Using any text editor, edit ‘server.xml’ file.
3. Search for Connector port="80" text and replace 80 with other number, for example, 8000.

The Intellicus can be now accessed as localhost:8000/intellicus.

Step 3- Setting Intellicus User Context

When it comes to integrating Intellicus with a host application it is desired that the user gets seamless
experience. That means, user should not only get the same look and feel, but if the application needs user

authentication, he/she should not be asked to log into Intellicus again.

Single sign-on refers to one time authentication performed by the host application. Intellicus does not
perform any authentication check for the Users accessing Intellicus from Host Application as these are

already authenticated. This means that User can access Intellicus without going through Intellicus Login

page
Please refer IntellicusSingleSign-on.doc for more details on single sign on.

Note: IntellicusSingleSign-On.doc will be provided with Intellicus setup.

Path: <Intellicus_Install_Path>\Docs\Manuals

Option-2: Intellicus Running inside a Host Application

In this method Intellicus web client components are deployed inside the host application server and

managed along with the host application.

During streaming of report output to the browser, the client components run in the memory space of host
application server and consume threads, temporary file space etc.

- Intellicus

.' Repository

/" Report Layouts
On DB

Ebedded P Reporting Calls

Figure 2: Integrated as embedded in host application

Use cases

1. Client application is a web-based application, which is deployed on some App Server. Intellicus

Web Application is running on the same server.

Intellicus web Application is embedded with the Host web application.

The Host Web Application accesses the Intellicus pages.

The Host Web Application accesses the Intellicus Report Server through Intellicus Web Application.

The Host application uses Intellicus JAVA APIs for creating/mapping Intellicus users/roles etc

(Point 6 in the diagram). Host application communicates with Intellicus JAVA APIs (includes

Intellica.jar, Xerces.jar, log4ij.jar, ReportClient.properties) deployed on their App server in their

class path.

6. Intellicus Report Server connects to Client database; with a single-user connection pool (Intellicus
creates its own repository tables in the database). Intellicus repository is also formed on the same
database (may be under a different schema).

7. Intellicus report server communicates with Client database and fetches data using report SQL from
Client database.

ok wnN

Steps to deploy Intellicus as a Embedded Application inside Host Application
1. Copy “intellicus” web application to the Host Application

Go to the drive where Intellicus is installed and then follow the path Intellicus>Jakarta>webapps,

copy the folder “intellicus” from there and place it inside the Host Application folder “hostapp”.

<jakarta home>webapps\hostapp\

2. Copy library files of intellicus

Copy the intellica.jar, log4ij.jar, xercesimpl.jar and xmlParserAPIs.jar inside the lib folder of WEB-
INF folder. The files intellica.jar, log4ij.jar, xercesImpl.jar and xmlParserAPIs.jar are taken from the

lib folder of WEB-INF folder of the “intellicus” folder.

3. Modify the contents of “web.xml’

e The contents of Intellicus’ web.xml (inside the WEB-INF of intellicus folder) should be merged

into web.xml of hostapp folder
<jakarta home>webapps\hostapp \WEB-INF\web.xml

e Modify the entry of propertyFilename to set env-entry-value to
/intellicus/client/config/ReportClient.properties

e Also, the mappings mentioned below requires prefix as Application Folder Name in its uel-
pattern. (Eg, if embedded folder “intellicus” is renamed as “report” inside host application,
then “/report” should be used as the prefix)

<servlet-mapping>
<servlet-name>ChartTemplateController</servlet-name>
<url-pattern>/report/tools/amchart/templates/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>GridTemplateController</servlet-name>
<url-pattern>/report/templates/grids/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
<servlet-name>HelpController</servlet-name>
<url-pattern>/report/common/help/images/Default/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>HelpController</servlet-name>
<url-pattern>/report/common/css/images/Default/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>HelpController</servlet-name>
<url-pattern>/report/common/help/stylesheets/help.css</url-
pattern>

4.

</servlet-mapping>
<servlet-mapping>
<servlet-name>WebStudioUtility</servlet-name>

<url-pattern>/report/webdesigner/images/user/*</url-pattern>
</servlet-mapping>
<env-entry>
<env-entry-name>propertyFileName</env-entry-name>
<env-entry-value>/report/client/config/ReportClient.properties</env-
entry-value>

<env-entry-type>java.lang.String</env-entry-type>
</env-entry>

Modify the ReportClient.properties file
The location of ReportClient.properties file.

<jakarta home>webapps\hostapp\intellicus\client\config

e REPORT_ENGINE_IP section in ReportClient.properties file should point to Report Engine
Server.

E.g.: ##[REPORT ENGINE CONFIGURATION]

Address of machine where Report Engine is running
(Default value:- 127.0.0.1)
REPORT_ENGINE_IP=192.168.33.110

Port number on which Report Engine is running

(Default Value:- 45450)

REPORT_ENGINE_PORT=45450

e SetINTERA_HOME to blank.
e Set RELATIVE_PATH=/intellicus

In case the name of the intellicus folder is renamed by the user like, “intellicus” is renamed

as “report”, then the relative path is set as “/report”

Modify the contents of “ReportEngine.properties”
The location of ReportEngine.properties:
<Intellicus_Install_Path>/ReportEngine/Config/
Change HYPERLINK_RELATIVE_PATH property

From: ../../../InteraController.jsp

10

To :.././../intellicus/InteraController.jsp

In case the name of the intellicus folder is renamed by the user like, “intellicus” is renamed as “report”,
then HYPERLINK_RELATIVE_PATH property should be set as ../../../report/InteraController.jsp

6. Access Intellicus from hostapp application
User can access Intellicus with following URL
http://<IP Address> :< port no>/hostapp/intellicus/index.jsp
In case the name of the intellicus folder is renamed by the user like “intell
icus” is renamed as “report” then the user can access Intellicus with the
following URL:

http://<IP Address> :< port no>/hostapp/report/index.jsp

HTML Look and Feel

All Intellicus JSP files use the style sheet- ‘intellicus.css’ to generate the HTML look-and-feel. You can change
‘intellicus.css’, or modify these JSP files to use your cascading style sheet file (CSS) to give the look-and-feel

according to your application.

Note: Intellicus provides professional services for developing the UI skin. Please
contact Intellics support for the same.

11

2 HTTP API

When Intellicus and Host application are running on different web servers as described in deployment

scenario 1, then Single Sign-On need to be implemented.
Please refer IntellicusSingleSign-on.doc for more details on single sign on.

Note: IntellicusSingleSign-On.doc will be provided with Intellicus setup.

Path: <Intellicus_Install_path>\Docs\Manuals

For deployment scenario 2, in which Intellicus is embedded inside Host application, Single Sign-On is not

required.

Intellicus functionalities can be accessed from within an application. This is done through HTTP APIs. APIs

are available for following functionalities:

e Getting category and report list

e Run, Schedule, Publish, E-Mail report

e Dashboard, Widget listing, Setting/Getting Dashboard Preferences
e Query/Parameter Object Editor

e Adhocreporting

General steps of integration are:

e Take Intellicus Token by implementing single sign-on
e CallHTTP API for the needed functionality

e Receive response from Intellicus

e Display the information in host application

Prerequisite

If the host application’s users are expected to authenticate in order to enter into the application, host
application will need to integrate with Intellicus using single sign-on (user authentication by host

application).

Intellicus needs to make sure that a request received from a host application is from a user already
authenticated by the host application. Intellicus provides token exchange mechanism for user

identification.

Before calling Intellicus HTTP APIs, we assume that token had been generated by Intellicus and received by

host application with the help of single sign on.

12

Method to get a token for Single Sign-On

This method calls Intellicus Controller APl and passes the user credentials and other
hidden/business/request parameters to Intellicus.

Name: getintellicusToken

Class: SingleSignOn

Syntax:

public String getIntellicusToken() throws SingleSignOnException

Returns:

TokenString: Received token from Intellicus

Method to access HTTP API

This method is called after getting a token from Intellicus. This method sets the name of Intellicus HTTP API
where request is being redirected.

Name: redirectTolntellicus

Class: SingleSignOn class

Syntax:

public void redirectToIntellicus(String onSuccess, String intellicusToken,
HttpServletResponse response) throws IOException

Parameters:

e OnSuccess: Relative URL of the requested Intellicus HTTP API.
e IntellicusToken: Token received from Intellicus after user authentication.
e Response: It is the HttpServletResponse object. It is used for redirecting a request.

CategoryList.jsp

The objective of the APl is to fetch the all the categories.
REQ_CATEGORY_ID
(Optional)

This parameter is used to show only specified category.

13

Example: REQ_CATEGORY_ID=4F9245A7-D639-4F99-604D-F32641B77725

REPORT_TYPE
(Optional)

This parameter is used to list the given type of reports in the specified category. Possible values for this
parameter are STANDARD/STUDIO, ADHOC, OLAP and All. In case this parameter is not specified both types
of reports will be listed.

Example: REPORT_TYPE=STUDIO.

Combination of the above parameters makes a relative URL that invokes category listing of Intellicus. For

example:

String onSuccess
=/core/CategorylList.jsp?REPORT TYPE=STUDIO&REQ CATEGORY_ ID=4F9245A7-D639-4F99-604D-
F32641B77725

ReportListForCategory.jsp

The objective of the APl is to fetch the reports for a particular category. It also acts as an interface to

perform any operations on the reports. This APl is configurable on the basis of access rights and license.

With this API, user having the required access rights can perform all the report operations like run a report in

desired format, schedule it, view saved reports and its description.

This APl governs following behaviors:

e Ifthe useris Super Admin or Admin he can perform all the activities.

e |Iftheuserisanend-user, and no access rights are granted, no icons will be visible.
e Toquickrunorrunthereport, ‘runreport’ and ‘publish’ access rights are needed.
e To publish areport, ‘view saved reports’ right is needed.

e Forscheduling, ‘run report’ and ‘schedule report’ rights are required.

e Forediting Adhoc report, ‘publish layout’ rights are needed.

CATEGORY_ID
(Mandatory)

This is the id of the category in which the report being run exists. This APl will list all the reports belonging

to the specified category.

Example: CATEGORY_ID=4F9245A7-D639-4F99-604D-F32641B77725

14

CAT_NAME
(Optional)
This is the Category Menu Name to which the Report belongs.

Example: CAT_NAME=DemoCategory

REPORT_TYPE
(Optional)

This parameter is used when user wants to list which type of reports available in a specified category.
Possible values for this parameter are STANDARD/STUDIO, ADHOC, OLAP and ALL.

In case this parameter is not specified, both types of reports will be listed.

Example: REPORT_TYPE=STANDARD

SEARCH_STRING
(Optional)

This parameter is used to display a list of reports having report name that is given in the SEARCH_STRING

parameter.
Example: SEARCH_STRING=Country Sales

This API will list of all reports which contains ‘Country Sales’ in report name

FROM_DATE

(Optional)

This parameter is used for giving list of all reports which is updated from specified date.
Example: FROM_DATE = 06/06/2007

This API will list of all reports which updated from 06/06/2007 date.

TO_DATE
(Optional)

This parameter is used for giving list of all reports which is updated up to specified date.

15

Example: TO_DATE = 06/06/2008
This API will list of all reports which updated up to 06/06/2008 date.

If FROM_DATE and TO_DATE both parameters are given in HTTP API then it will fetch list of all reports which

updated between these two dates

SHOW_RERUN

(Optional)

This parameter is used to enable/disable Re-Run option in the report listing page.
Example: SHOW_RERUN=true

This APl will enable Re-Run Option in report listing.

SHOW_DELETE

(Optional)

This parameter is used to enable/disable delete option in the report listing page.

Example: SHOW_DELETE=true

This APl will enable delete Option in report listing.

Combination of above parameters constructs a URL to get report listing of Intellicus reports. For example:
String onSuccess

="/core/ReportListForCategory.jsp?REPORT TYPE=ADHOC&CATEGORY ID=4F9245A7-D639-4F99-
604D -

F32641B77725&5HOW_DELETE=t rue&FROM _DATE=06/06/2007&T0_DATE=06/06/2009&SHOW_RERUN=tr
uel'

Sample URLs:

For getting list of all the reports in the category

/core/ReportListForCategory.jsp?CATEGORYID=96EFO65A-92DE-5F64-E2AF-C4139396DD6B

For getting list of Standards reports in the category

/core/ReportListForCategory.jsp?CATEGORYID=96EF065A-92DE-5F64 - E2AF -
C4139396DD6B&REPORT TYPE=STUDIO

16

For getting list of Adhoc reports in the category

/core/ReportListForCategory.jsp?CATEGORYID=96EF065A-92DE-5F64-E2AF -
C4139396DD6B&REPORT TYPE=ADHOC

RepositoryExplorer.jsp
The objective of this APl is to show the repository explorer to the User. This APl is configurable on the basis
of access rights and license.

With this API, user having the required access rights can view explorer for different entities like Reports,

Categories, Queries, Parameter objects, Dashboards, Favorites etc.
ENTITYTYPE

(Optional)

This parameter takes entity that is to be shown in the Explorer.
Example: ENTITYTYPE = REPORT

Valid Values:

ENTITYTYPE = REPORT

ENTITYTYPE = FAVORITES

ENTITYTYPE = QUERY

ENTITYTYPE = PARAMETER

ENTITYTYPE = DASHBOARD?2

ENTITYTYPE = DASHBOARD_WIDGET

In case this parameter is not specified, it takes “Repository” as default and shows Repository Explorer.

EXPLORER_TITLE

(Optional)

This parameter takes name that is to be shown in the Explorer Title.

Example: EXLPORER_TITLE = Reports

Combination of above parameters constructs a URL to get Object Explorer for Query Objects. For example:

StringonSuccess="/core/RepositoryExplorer.jsp?ENTITYTYPE=QUERY&EXPLORER_TITLE=Queries

17

Now pass above onSuccess parameter to redirectTolntellicus method of SingleSignOn class.

InteraController.jsp

This APl is the main controller of Intellicus report server. All the reports related requests to the report server
are passed through this API. This controller is used for both Standard and Adhoc reports. Depending on the

Action code given, this controller will ask report server to do the required task.
InteraController.jsp is used to:

Quick run a report

e Execute and view a report in a specific output format

e Execute and deliver a report as email, publish or printout
e View published report

e Schedule areport

This jsp accepts system parameters and business parameters.
System Parameters

ACTION_CODE

(Mandatory)

This parameter is to specify the action that this APl will initiate. A list of action-codes and actions is

provided in the table given below.

Action Description
Code
000 Takes navigation to system parameter page. From here a user can select report delivery

option, database connection, output format and other options before running the report.

001 If the report has user parameters, it takes navigation to Intellicus user parameters page. User
can specify values for parameters from this screen and can execute the report. If report does

not have any parameters, it executes report directly.

010 To Run Report with previous run report parameter values.
002 Executes report and navigates to report viewer screen.

003 Request to show all the system, report parameter in one jsp.
300 Request to show all the system, eport parameter in one jsp.

18

Action Description

Code

004 Open Scheduled Repots in viewer.

005 Open published report in viewer.

400 Submission of edit parameter form and request for updated report.

500 Save dialog submission and request to save report.

600 Delete report layout.

700 Delete saved report.

800 Generate dynamic report.

802 Dynamic report generation for drilldown reports.

900 Promptable information check and execution of dynamic adhoc report with no parameter.
901 Execution of adhoc report after taking promptable information from AdHocWizardRun.jsp.
902 Promptable information check and execution of saved adhoc report with no parameter.

Example: ACTION_CODE=002

REPORT_ID

(Mandatory)

This is the Id of the report being run. User can view report id from Intellicus portal’s “Deploy Categories and

Reports” page.

Example: REPORT_ID=96EF065A-92DE-5F64-E2AF-C4139396DD6B

DSGN_MODE

(Optional)

19

This parameter is to specify designer of the report. The way report is executed, also depends on its design

mode. Valid values are:

e STUDIO: Specify this value when report being run is designed in Intellicus Studio (these reports are
also known as Standard Reports).
e ADHOC: Specify this value when report being run is designed in Adhoc designer (these reports are
also known as Adhoc Reports).
Default value: STUDIO

Example: DSGN_MODE=STUDIO

MENU_NAME
(Optional)
This is the name of the report being run. Report name is used in the Ul for identifying the report.

Example: MENU_NAME=Sales by Country

CATEGORY_ID
(Optional)

This is the id of the category in which the report being run exists. User can view category id from Intellicus
portal’s “Deploy Categories and Reports” page.

Example: CATEGORY_ID=4F9245A7-D639-4F99-604D-F32641B77725

REPORT_FORMAT
(Optional)

This is the output format in which report is to view. Possible values for this parameter are rdf, pdf, htm, xls,
txt, rtf, ppt, dhtm(iHTML), csv, doc, xml, rwt(Rawtext), dhtm2(SMART)

Default value: htm

Example: REPORT_FORMAT=htm

REPORT_CONN_NAME
(Optional)
This parameter is to specify name of the database connection to be used for running the report. Specified

connection must exist in report server.

20

Example: REPORT_CONN_NAME=ReportDB

OPERATION_TYPE
(Optional)

This parameter is to specify type of the operation requested. Possible values are VIEW, EMAIL, SAVE, PRINT,
PRINT_AT_SERVER.

e VIEW: Generated report is sent to the report viewer for display.

e EMAIL: Generated report is E-mailed as an attachment or hyperlink.

e SAVE: Report output is saved as snapshot instead of being displayed.

e PRINT: Report is sent to the local printer instead of being displayed.

e PRINT_AT_SERVER: Report is sent to the printer on report server instead of being displayed.
e PRINT_LOCALLY: Report is sent to the local printer instead of being displayed.

Default value: VIEW

Example: OPERATION_TYPE=VIEW

HTM_MULTIPAGEOUTPUT
(Optional)

This parameter is used to specify whether report output should be in multiple pages or single page.

Possible values are true and false.

e True: Displays the report using multiple HTML pages.
e False: Displays report using a single HTML page by merging all report pages into one.

This parameter is used when OPERATION_TYPE is VIEW and REPORT_FORMAT is HTM.
Default value: true

Example: HTM_MULTIPAGEOUTPUT=true

HTM_SHOWTOOLBAR
(Optional)

This parameter is used to specify whether toolbar in the html report output should be displayed or not.
Possible values are 0,1 and 2 for SHOW_NEVER, SHOW_ALWAYS, and SHOW_WHEN_MULTIPAGE

respectively.

SHOW_NEVER: Never shows the toolbar in HTML viewer. The viewer cannot navigate to further pages if the

report has many pages.

21

SHOW_ALWAYS: Always shows the toolbar in HTML viewer.

SHOW_WHEN_MULTIPAGE: The toolbar is shown only when the report generates more than one page.

Otherwise, when the report generates only one page the toolbar is hidden.

This parameter is used when OPERATION_TYPE is V/EWand REPORT_FORMAT is HTM.
Default value: SHOW_ALWAYS

Example: HTM_SHOWTOOLBAR=1

SHOW_NEVER=0

SHOW_ALWAYS=1

SHOW_WHEN_MULTIPAGE=2

IRLDATA
(Optional)

Itis used to get the IRL xml from the request object.

ARLDATA
(Optional)

It is used to get the ARL xml from the request object.

REQUESTTYPE
(Optional)

Itis used to specify the type of Request related to particular Report whether to Cancel the Running Report or

not.

Example: REQUESTTYPE = CANCEL

EXECUTIONTYPE

(Optional)

It is used to specify the Execution Type whether Run, Run In Background, or Scheduled
Example: EXECUTIONTYPE =:ALL

EXECUTIONTYPE =DIRECT: Run

EXECUTIONTYPE =SCHD: Scheduled Report

22

EXECUTIONTYPE =ASYNC: Run in Background

STATUS

(Optional)

It is used to specify the Status of Report.
Example:

STATUS =: All

STATUS = UNDERPROCESS: Running

STATUS = COMPLETED: Completed

FROMDATE

(Optional)

This parameter is used for giving list of all reports updated from specified date.
Example: FROMDATE =06/06/2007

This API will list of all reports updated from 06/06/2007 date.

TODATE

(Optional)

This parameter is used for giving list of all reports updated up to specified date.
Example: TODATE = 06/06/2008

This API will list of all reports updated up to 06/06/2008 date.

If both parameters, FROMDATE and TODATE are given in HTTP API then it will fetch list of all reports updated

between these two dates.

ORPHAN
(Optional)

This specifies whether Orphan option is selected in Look in Category i.e. FRO MCATEGORY or from
ReportLayouti.e. FROMREPORT.

Example: ORPHAN = FROMCATEGORY

23

APP_PRO_STATUS
(Optional)
This specifies the approval process status value.

Example: APP_PRO_STATUS = All

IS_DIRECT_EXEC
(Optional)
This specifies whether the Report should directly Run or show Parameters.

Example: IS_DIRECT_EXEC = False i.e. Show Parameters and then run the Report.

Business Parameters
(Optional)

Apart from system parameters and user parameters, host application can pass business parameters to
Intellicus. These parameters can be used for enforcing authorization. Also business parameters can be

used in report SQL for filtering records.
These parameters are used to specify query parameter names (and their respective values) in the HTTP URL.

Suppose we have a report having certain parameters, based on which it will fetch some records. For
example a report named “country details” fetches records on the basis of country name. Parameter name is

“prmCountry”.

So we will send prmCountry parameter and its value in the URL.

Example: prmCountry="Brazil’

The URL to run a report (in HTML) accepting prmCountry as a run time parameter, the URL would be:
String onSuccess ="/InteraController.jsp?

ACTION CODE=002&0PERATION TYPE=VIEW&DSGN MODE=STUDIO&REPORT ID=2030DDEA-841B-E360-
3CA0-5954AA945B92&REPORT FORMAT=htm&prmCountry='Brazil’

Sample URLs:

Run-time System parameters page

/InteraController.jsp?ACTION CODE=00OQ&REPORT ID=96EF065A-92DE-5F64-E2AF-
C4139396DD6B

24

Input parameters page

/InteraController.jsp?ACTION CODE=001&REPORT ID=96EF065A-92DE-5F64-E2AF -
C4139396DD6B

For running standard report

/InteraController.jsp?ACTION CODE=002&0PERATION TYPE=VIEW&DSGN MODE=STUDIO&REPORT I
D=2030DDEA-841B-E360-3CA0-5954AA945B92&REPORT FORMAT=htm

For running Adhoc report

/InteraController.jsp?ACTION CODE=002&0PERATION TYPE=VIEW&DSGN MODE=ADHOC&REPORT ID
=2030DDEA-841B-E360-3CA0-5954AA945B92&REPORT FORMAT=htm

For running Adhoc report in pdf format

/InteraController.jsp?ACTION CODE=002&0PERATION TYPE=VIEW&DSGN MODE=ADHOC&REPORT ID
=2030DDEA-841B-E360-3CA0-5954AA945B92&REPORT FORMAT=pdf

OlapViewer.jsp

The objective of APl is to show the list of OLAP reports available in the Repository.
This API takes below parameter

LAYOUT_ID

(Optional)

This parameter is used for opening a saved layout. When this parameter is specified, layout saved with this
id should be opened and viewed in specified web browser’s view port. Any valid Cube Layout ID saved in
repository String onSuccess = /olap/OlapViewer.jsp? LAYOUT_ID=F46DB80D-C532-5069-F7A7-A43D726CB663

VIEW_MODE
(Optional)
This parameter is used to specify the view in which user wants to open the Viewer.

Possible Values

25

http://192.168.33.80:8081/intellicus/olap/OlapViewer.jsp?LAYOUT_ID=F46DB80D-C532-5069-F7A7-A43D726CB663

e GRID: To open the Viewer in Grid view
e CHART: To open the Viewer in Chart view
e DUAL: To open the Viewer in Dual Panel view

String onSuccess = /olap/OlapViewer.jsp?LAYOUT ID=F46DB80D-C532-5069-F7A7-
A43D726CB663&VIEW MODE=CHART

DATA_ACTIONS
(Optional)
This parameter is used to specify whether User should be allowed to change data on Grid and Chart.

Possible Values

e TRUE: Allow Data Refreshing.
e FALSE: No Data Refreshing.

Default Value

e TRUE

String onSuccess = /olap/OlapViewer.jsp?LAYOUT ID=F46DB80D-C532-5069-F7A7-
A43D726CB663&DATA ACTIONS=FALSE

EXPLORER
(Optional)
This parameter is used to specify the desired state of Explorer Panel in the viewer.

Possible Values

e SHOW: To show Explorer Panel in expanded form.
e HIDE: To hide Explorer Panel
e COLLAPSED: To show Explorer Panel in collapsed form.

Default Value

e SHOW
Exceptions

If DATA_ACTIONS=FALSE, then its value is always forced to HIDE

DISPLAY_TITLE
(Optional)
This parameter is used to specify whether title for layout should be displayed or not.

26

http://192.168.33.80:8081/intellicus/olap/OlapViewer.jsp?LAYOUT_ID=F46DB80D-C532-5069-F7A7-A43D726CB663&VIEW_MODE=GRID
http://192.168.33.80:8081/intellicus/olap/OlapViewer.jsp?LAYOUT_ID=F46DB80D-C532-5069-F7A7-A43D726CB663&VIEW_MODE=GRID
http://192.168.33.80:8081/intellicus/olap/OlapViewer.jsp?LAYOUT_ID=F46DB80D-C532-5069-F7A7-A43D726CB663&VIEW_MODE=GRID
http://192.168.33.80:8081/intellicus/olap/OlapViewer.jsp?LAYOUT_ID=F46DB80D-C532-5069-F7A7-A43D726CB663&VIEW_MODE=GRID

Possible Values

e SHOW: To show the title
e HIDE: To hide the title

Default Value

e SHOW

LAYOUT_ACTIONS
(Optional)
This parameter is used to specify whether Save and Open buttons should be displayed or not.

Possible Values

e TRUE: To show Save and Open buttons (Default)
e FALSE: To hide Save and Open buttons

Default Value

e TRUE

CONN_LIST
(Optional)

This parameter is used to specify whether Connection List should be displayed or not and if displayed it

should be enabled or not.

Possible Values

e SHOW: To show enabled Connection list.
e HIDE: To hide connection list.
e DISABLE: To disable connection list.

Default Value

e SHOW

CO_LIST
(Optional)

This parameter is used to specify whether Cube Object List should be displayed or not and if displayed it

should be enabled or not.

Possible Values

e SHOW: To show enabled Cube Object list.

27

e HIDE: To hide Cube Object list.
e DISABLE: To disable Cube Object list.

Default Value

e SHOW

OLAP_CONN_NAME
(Optional)

This parameter is used to specify the name of connection which should be selected by default in connection

listing if present.

CO_NAME
(Optional)

This parameter is used to specify the name of Cube Object which should be selected by default in Cube
Object listing.

TOOLBAR
(Optional)
This parameter is used to specify whether Toolbar should be displayed or not.

Possible Values

e SHOW: To show the Toolbar.
e HIDE: To hide the Toolbar.

Default Value

e SHOW

TOOLBAR_OPTIONS
(Optional)
This parameter is used to specify the toolbar options to be displayed.

The value is a comma-separated list containing the options which should be displayed in the toolbar.

e GRIDVIEW
e CHARTVIEW
e DUALVIEW

e SELECTCHART

28

e SWAPAXES

e CLEAR

e ACTION
e EXPORT
e ALL

Default Value

e ALL

SLICER
(Optional)
This parameter is used to specify whether Slicer Bar should be displayed or not.

Possible Values

e SHOW: To show the Slicer.
e HIDE: To hide the Slicer.

Default Value

e SHOW

SavedReportList.jsp

The objective of APl is to show the list of saved reports available for the given report. Each saved report

provides us with following details:

e Saved Report Name
e Published By
e Generation Time
e Expiry Time
e Comments
In addition to the above details, following options are also available:

Option to view each saved report in any of the supported report output format.

Option to view the comments provided by user(s) on that saved report. If collaboration is disabled in the

license then when user clicks on the comment icon a message would pop-up indicating the same.
Option to delete any of the saved report-instance(s).

The Administrator (Super-Admin and Admin) are also provided with the option of viewing privately saved

reports of other users.

REPORT_ID

29

(Mandatory)
This is the Id of the report for which saved reports list is requested.

Example: REPORT_ID=96EF065A-92DE-5F64-E2AF-C4139396DD6B

ISPUBLIC
(Optional)

This is to specify whether the report is public or private. Possible values for this parameter are true and

false. In case this parameter is not specified both types of reports will be listed.
Example: ISPUBLIC=true

Combination of above parameters makes a URL that invokes saved report listing of Intellicus.

MENU_NAME
(Optional)
This is the name of the report being run. Report name is used in the Ul for identifying the report.

Example: MENU_NAME=Sales by Country

CATEGORY_ID
(Optional)

This is the id of the category in which the report being run exists. User can view category id from Intellicus

portal’s “Manage Folders and Reports” page.

Example: CATEGORY_ID=4F9245A7-D639-4F99-604D-F32641B77725

FROM_DATE

(Optional)

This parameter is used for giving list of all reports updated from specified date.
(FROM_DATE shuold be in MM/DD/YYYY format).

Example: FROM_DATE = 06/06/2007

This API will list of all reports which updated from 06/06/2007 date.

30

TO_DATE

(Optional)

This parameter is used for giving list of all reports updated up to specified date.
(TO_DATE shuold be in MM/DD/YYYY format).

Example: TO_DATE = 06/06/2008

This API will list of all reports updated up to 06/06/2008 date.

If FROM_DATE and TO_DATE both parameters are given in HTTP API then it will fetch list of all reports

updated between these two dates.

DEPTH

(Optional)

This parameter is to specify level of searching i.e. whether COMPLETE or CURRENT_LEVEL.
COMPLETE=-1 (Searches in complete multilevel category hierarchy)

CURRENT_LEVEL=0 (Searches in current Category of multilevel hierarchy)

ACCESSRIGHTS
(Optional)

This parameter is to specify Access Rights for the Report.

CATACCESSRights
(Optional)

This parameter is to specify Access Rights for the given Category.

CALLEDFROM
(Optional)
It specifies the page, from where it is called.

Example: CALLEDFROM =VIEWER

31

ALL_USER_RPTS

(Optional)

This is the Request Parameter that is used to decide whether to get all the user's published report or not.
For example: ALL_USER_RPTS = true

String onSuccess = /core/ SavedReportList.jsp? REPORT ID=96EF065A-92DE-5F64-E2AF-
C4139396DD6B& ISPUBLIC=true&DEPTH=-1

Now pass above onSuccess parameter to redirectTolntellicus method of SingleSignOn class.

Dashboard

Objective of API: To load any dashboard by default or for editing any existing one. There are three types of
APIs for dashboard:

e Dashboard Viewer API
e Widget Designer API
e Dashboard Preferences

DashboardViewer.jsp
This API takes below parameter.

DASHBOARD_ID: The unique identifier of the Dashboard that should be loaded for editing in the Dashboard

viewer.
This parameter makes a URL that invokes Dashboard Viewer page of Intellicus.
For example:

String onSuccess = /dashboard/DashBoardViewer.jsp?DASHBOARD ID=DE65F377-5E46-153B-
A56E-54E1073D59B2

SELECTED_DASHBOARD_ID: This parameter shall be respected only if the dashboard with this id is in user's

preferences.
For example:

String onSuccess = /dashboard/DashBoardViewer.jsp?SELECTED DASHBOARD ID=B954111B-
1881-21CE-1958-0DB411187785

32

SHOW_FULL_SCREEN: This option is to show full screen option or not. If the value is false then it will not

show the full screen option.
This parameter makes a URL that invokes Dashboard Viewer page with/without SHOW_FULL_SCREEN icon
For example:

String onSuccess = /dashboard/DashBoardViewer.jsp?DASHBOARD ID=DE65F377-5E46-153B-
A56E-54E1073D59B2&SHOW_FULL SCREEN=true

WidgetDesigner.jsp
This API takes following parameters:
WIDGET_ID: The unique identifier of the Widget that should be loaded for editing.

This parameter makes a URL that invokes Widget Designer page of Intellicus.

SHOW_TAB (Optional): This parameter is used to display Report Tabs on Widget Designer.
Possible Values: ALL/REALTIME/PREGEN

Default Value: ALL

DEFAULT_TAB (Optional): This parameter is used to select default Report tab (Real Time or Pre-generated)
on loading of Widget Designer.

Possible Values: REALTIME/PREGEN
Default Value: REALTIME

For example:

String onSuccess =

/dashboard/WidgetDesigner. jsp?WIDGET ID=12628459959568192168336132613160&SHOW_TAB=A
LL&DEFAULT TAB=PREGEN

DashboardPreferences.jsp
Below URL invokes the Dashboard Preferences page of Intellicus.
For example:

String onSuccess =/dashboard/DashBoardPreferences.jsp

33

http://192.168.33.80:8081/intellicus/dashboard/DashBoardViewer.jsp?DASHBOARD_ID=DE65F377-5E46-153B-A56E-54E1073D59B2&SHOW_FULL_SCREEN=true
http://192.168.33.80:8081/intellicus/dashboard/DashBoardViewer.jsp?DASHBOARD_ID=DE65F377-5E46-153B-A56E-54E1073D59B2&SHOW_FULL_SCREEN=true

AdhocWizard.jsp

Objective of the API: To load the Ad Hoc report designer and facilitate the user to perform all the desired
activities on that Ul. Moreover it is used to design new report as well as open and edit a saved report.

Parameters

e DEFAULTEXPANDTABS: All or None.

e SYS_TEMPLATE_NAME: is send as request to show template. It needs no validations and no pre
defined values.

e CATEGORY_ID: Saves report in predefined category.(Only when designing a new Report and saving
it)

e REPORT_ID: Opens the Report with given Report_lId for Editing.

e LINK_TO_IDENTIFIER: Provides tab identifier for launching use case on click of Query Editor.

e REPORT_FORMAT: This request parameter is used for governing default value for report format

e WIZARD_LAYOUT_TYPE: This request level parameter is used for defining layout type of Adhoc
Wizard.
Possible Values: TABBED/ACCORDION

e SHOW_TAB: HTTP request level parameter for selecting particular tab or section of Adhoc Wizard.
This could be comma separated values.
Possible Values: SELECT/GROUP/FILTER/TOTAL/SORT/HIGHLIGHT/

MATRIX/CHART/NETWORK_GRAPH

e SHOW_CHART_TYPE: HTTP request level parameter for showing specified chart type as default
selected.
Possible Values: PIE/BAR/LINE/CURVE/CURVEAREA/AREA/SCATTER/RADAR/BUBBLE

There are no mandatory parameters required in this case.

Combination of above parameters makes a URL that invokes AdhocWizard report design page of Intellicus.
For example:

Creating a new report

String onSuccess=/custom/AdHocWizard.jsp? DEFAULTEXPANDTABS=A1ll

Editing an existing report
String onSuccess=/custom/

AdHocWizard. jsp?DEFAULTEXPANDTABS=AL1&CATEGORY ID=4F9245A7-D639-4F99-604D-
F32641B77725

Now pass above onSuccess parameter to redirectTolntellicus method of SingleSignOn class.

SelectAdhocSource.jsp

Objective of the API: To load the Ad Hoc report visualizer with Data source selection selection. This page is

called when we open Adhoc visualizer from Navigation.

Adhoc Visualizer with Data Source selection Screen

34

String onSuccess=/custom/SelectAdhocSource.jsp

Now pass above onSuccess parameter to redirectTolntellicus method of SingleSignOn class.

AdhocVisualizer.jsp

Objective of the API: To load the Ad Hoc report visualizer and facilitate the user to perform all the desired
activities on that Ul. Adhoc Visualizer allows user to directly view the report data with all columns as default
and then the user has provision to change certain things like selected columns, filters, grid view, chart view
or Map view, apply grouping, sorting, filters, highlighting, total etc. Also the user can select existing report

and view from this visualizer.
Parameters

VIEW_USECASE:

(Optional)

This parameter takes value of VIEW_USECASE parameter to allow user to open visualizer for various
usecases like NEW for opening new report with given QUERY_ID or SAVED for opening existing report for
given REPORTID etc.

Possible Values

e NEW- Used to design a new Report.QUERY_ID is mandatory. (Default)

e SAVED- Open Existing Report(REPORTID is mandatory)

e PUBLISHED- Open Saved instance of Report(REPORTOID is mandatory)

e REQUEST- To Open Adhoc Visualizer using ARLDATA.

e RUNINBACKGROUND- Run Smart Report in background(REPORTID is mandatory)
e AUDIT- Called for Auditted Reports (REPORTOID is mandatory)

e CHANGEDATASOURCE- To Open Report with different Data Source

Adhoc Visualizer with Data Source loaded for designing New Report

String onSuccess=/custom/AdhocVisualizer.jsp?
VIEW_USECASE=NEW&QUERY ID=12607729345009203129192910671882

Adhoc Visualizer opened for Existing Report

String onSuccess=/custom/AdhocVisualizer.jsp?
VIEW_USECASE=SAVEDSREPORT ID=AF654266-1477-EE8A-BFB1-5D0A2A59A4BE

QUERY_ID:

This parameter is mandatory for VIEW_USECASE as NEW. It takes Query Id which is to be loaded in Adhoc

Visualizer.

Open Adhoc Visualizer with Data Source loaded

35

http://localhost:91/intellicus/custom/AdhocVisualizer.jsp?VIEW_USECASE=NEW&QUERY_ID=1260772934500
9203129192910671882

REPORTID:

This parameter is mandatory for VIEW_USECASE as SAVED. It takes Report Id so as to load the existing
Report in Adhoc Visualizer.

Open Adhoc Visualizer with Report loaded

http://localhost:91/intellicus/custom/AdhocVisualizer.jsp?VIEW_USECASE=SAVED&REPORT_ID=AF654266-
1477-EESA-BFB1-5D0A2A59A4BE

EDIT_MODE:
(Optional)

This parameter takes value of EDIT_MODE parameter to allow user to open visualizer in Edit mode or View
Mode.

Possible Values

e TRUE: Opened with Edit Mode
e FALSE: Opened in View Mode.

Adhoc Visualizer with Data Source loaded in view mode

String onSuccess=/custom/AdhocVisualizer.jsp?
QUERY ID=12607729345009203129192910671882&EDIT MODE=FALSE

Adhoc Visualizer with Data Source loaded in Edit mode

String onSuccess=/custom/AdhocVisualizer.jsp?
QUERY_ID=12607729345009203129192910671882&EDIT MODE=TRUE

Combination of above parameters makes a URL that invokes AdhocWizard report design page of Intellicus.

Now pass above onSuccess parameter to redirectTolntellicus method of SingleSignOn class.

QueryObijectList.jsp

To display the detail of a query object.
Parameters

QUERY_ID

36

(Optional)
To specify the query object’s Id to view details.

onSuccess = /custom/reportobjects/QueryObjectList.jsp? QUERY_ID=126077328926986838754445

QUERY_NAME
(Optional)
To specify the query object’s name to view its details.

onSuccess = /custom/reportobjects/QueryObjectList.jsp? QUERY_NAME=Sales Detail

ParameterObjectList.jsp

To display the detail of a query object.

Parameters

PARAMETER_NAME

(Optional)

To specify the Parameter object’s name to view its details.

onSuccess = /custom/reportobjects/ParameterObjectList.jsp?PARAMETER_NAME=prmCountry

PARAMETER_ID
(Optional)
To specify the Parameter Id of the parameter to view its details.

/custom/reportobjects/ParameterObjectList.jsp?PARAMETER_ID=12646774660505127018091194654991

PrintSettingList.jsp

This APl is used to call page that have functionalities of working with print related settings. When a report is
associated with a print setting, report is printed as per the preferences set in the associated print setting.

For example:

onSuccess = /core/PrintSettingsList.jsp?PrintSettingsName=PrintSettingl

37

http://localhost:8433/intellicus/core/PrintSettingsList.jsp?PrintSettingsName=PrintSetting1

Preferences.jsp

This API provides Ul to set following user preferences:

Change password

e Setdefault connection

e Set portal preferences

e Set parameter preferences
e Setdashboard preferences
e Messenger preferences

For example: onSuccess = personalization/Preferences.jsp

38

3 RESTful API

Intellicus supports REST calls for integrating Intellicus data and functions into an application. This section of
document discusses the Intellicus integration architecture of REST APIs along with their use cases to
perform CRUD operations and apply transformations on various Reporting use cases. These REST services
enable you to log in, and then perform various Reporting or Administrative activities in Intellicus.

REST stands for Representational State Transfer. It relies on a stateless, client-server, cacheable

communications protocol -- and in virtually all cases, the HTTP protocol is used.

RESTful applications use HTTP requests to post data (create and/or update), read data (e.g., make queries),

and delete data.

Rest Integration Architecture

Intellicus

Host Application

-

Rest Service Request

v

N

@ Response 200 OK

39

Response Code

The intellicus APl attempts to return appropriate status codes for every request.

Response Code

200

503

401

404

412

500

Accessing the REST API

Response Message

OK

TIMEOUT OCCURED. LOGIN AGAIN.

UNAUTHORIZED ACCESS

RECORD NOT FOUND

PRECONDITION FAILED. PARAMETER MISSING

FAILED

We have created REST clients using JERSEY client APIs that we ship with Intellicus installer. To use those

intellicus Restful APIs, we used below jersey jars :

e jersey-core.jar
e jersey-client.jar
e java-json.jar

URL

Authentication

URL Action Description

http://<host>:<port>/rest/login POST Login into Intellicus Report Server using this
API.

http://<host>:<port>/rest/logout GET Logout from Intellicus Report Server using this
API.

40

Organization

URL Action Description
http://<host>:<port>/rest/org GET List of all the organization.
http://<host>:<port>/rest/org/{orgld} GET Return the object of the orgld specified.
http://<host>:<port>/rest/org POST Create organization of the orgld specified.
http://<host>:<port>/rest/org/{orgld} DELETE Delete the organization specified by orgld.
User
URL Action Description
http://<host>:<port>/rest/user GET List of all the users.
http://<host>:<port>/rest/user/{userld} GET Return the object of the user Id specified.
http://<host>:<port>/rest/user/{userld} DELETE Delete the user specified by user Id.
Role
URL Action Description
http://<host>:<port>/rest/role GET List of all the roles.
http://<host>:<port>/rest/role/{roleld} GET Return the object of the role Id specified.
http://<host>:<port>/rest/role/{roleld} DELETE Delete the role specified by role Id.

41

Category

URL

Action | Description

http://<host>:<port>/rest/category GET List of all the categories.

http://<host>:<port>/rest/category/{categoryld} GET Return the object of the role
Id specified.

http://<host>:<port>/rest/category/subcategories/{categoryld} | GET List of all the Sub categories

in a category.

http://<host>:<port>/rest/category/{categoryld}

DELETE | Delete the category specified

by category Id.

http://<host>:<port>/rest/category

POST Create a new category.

Report

URL Action | Description

http://<host>:<port>/rest/report GET List of all the reports.

http://<host>:<port>/rest/report/{reportid} GET Return the object of the report Id
specified.

http://<host>:<port>/rest/report/categoryld/{categoryld} | GET List of reports inside a category.

http://<host>:<port>/rest/report/saved/{reportid} GET List of saved report of the given
report inside a category.

http://<host>:<port>/rest/report/{reportld} DELETE | Delete the report specified by

report Id.

42

Report Object

URL Action | Description

http://<host>:<port>/rest/reportObject GET List of all the report
objects.

http://<host>:<port>/rest/reportObject/{reportObjectType} GET Return the object of the

report Object specified.

http://<host>:<port>/rest/reportObject/category/{categoryName} | GET

List of all the report object

inside a category.

http://<host>:<port>/rest/reportObject/report/{reportid} GET List of all the report object
inside a report.

http://<host>:<port>/rest/reportObject/{reportObjectType} DELETE | Delete the specified
report.

OLAP

URL Action Description

http://<host>:<port>/rest/olap GET List of all the dimensions in a cube.

http://<host>:<port>/rest/olap/buildStatus GET Return the status of the cube which is on

build.
http://<host>:<port>/rest/olap/buildCube PUT
http://<host>:<port>/rest/olap/{cubename} DELETE Delete the specified cube object.

43

Dashboard

URL Action | Description
http://<host>:<port>/rest/dashboard GET List of the dashboards.
http://<host>:<port>/rest/dashboard/dashboardpreference GET List of dashboards set in
particular user preference.
http://<host>:<port>/rest/dashboard/categoryld/{categoryld} | GET List of dashboards which are
presentinside a category.
http://<host>:<port>/rest/dashboard/{dashboardid} GET Return the object of the
specified dashboard.
http://<host>:<port>/rest/dashboard/{dashboardid} DELETE | Delete the specified

dashboard.

Dashboard Widget

URL

Action | Description

http://<host>:<port>/rest/dashboardWidget GET List of the dashboard
Widgets.
http://<host>:<port>/rest/dashboardWidget /categoryld/{categoryld} | GET List of dashboard

Widgets which are
presentinside a

category.

http://<host>:<port>/rest/dashboardWidget/{dashboardWidgetName}

GET Return the object of
the specified
dashboard widget.

http://<host>:<port>/rest/dashboard/{dashboardWidgetName}

DELETE | Delete the specified
dashboard widget.

44

DB Connection

URL Action | Description
http://<host>:<port>/rest/dbConnection GET List of the DB connections
http://<host>:<port>/rest/dbConnection/{ GET Return the object of the specified DB
connName} connection.

http://<host>:<port>/rest/dbConnection/{connName | DELETE | Delete the specified DB connection.
}

Schedule
URL Action | Description
http://<host>:<port>/rest/schedule GET List of the schedule.
http://<host>:<port>/rest/schedule/{scheduleld} | GET Return the object of the specified schedule.
http://<host>:<port>/rest/schedule/{scheduleld} | DELETE | Delete the specified schedule.

Schedule Job

URL Action | Description
http://<host>:<port>/rest/scheduleJob GET List of the scheduleb Job.
http://<host>:<port>/rest/scheduleJob/{schdJobName} | GET Return the object of the specified

scheduled Job.

http://<host>:<port>/rest/scheduleJob/{schdJobName} | DELETE | Delete the specified scheduled Job.

45

—
Q)
(2]
=~

URL Action Description
http://<host>:<port>/rest/task GET List of all the task..
http://<host>:<port>/rest/task/{taskName} GET Return the object XML of the specified task.

http://<host>:<port>/rest/task/{taskName} DELETE Delete the specified task.

Entities
URL Action Description
http://<host>:<port>/rest/entities/copy PUT Copy entities from one category to another.
http://<host>:<port>/rest/entities/move PUT Move entities from one category to another.
http://<host>:<port>/rest/entities/delete DELETE Delete all the specified entities

Report Execution

URL Action Description

http://<host>:<port>/rest/reportExec GET

Authentication
Login

This APl is needed to authenticate a user. On successful authentication, this REST call returns with a session

id that can be further used to request any other REST call.
Pattern
/rest/login

Method

46

POST

Request body
content type* application/x-www-form-urlencoded
Parameters
Name Description Type Default
username”* User present in Intellicus Repository. The user formdata None
must have the appropriate privileges
configured for the actions he/she is going to
take using the API calls.
password* Password associated with the username. formdata None
organization* The organization of the user to be formdata None
authenticated
tokenTimeOut Number of minutes of inactivity after which the | formdata 30
login session will end. After this timeout login
request has to be resent for any further request.
Accept* Type of the response either JSON or XML. Request XML
o o header
(Application/xml or Application/Json)
Example:

POST http://<IP>:<Port>/intellicus/rest/login
Post Paramters

username:John

password: abcd1234

organization: Intellica

tokenTimeOut: 20

Note: Users of organizations whose authentication type is Host Application cannot

acess REST APIs.

47

API results with sessionid enclosed in a success tag, in case of successful authentication.
APl results with an error message, in case of any error.

The sessionid attribute of this user should be passed in other APIs in subsequent requests for User

Identification.
Note: Login will return a sessionid as a response.

Ex: <SUCCESS> New organization - Advanced tab </SUCCESS>, and this sessionid will be used in all the

other REST API’s as a header parameter.

Setting sessionld
This session Id is the one that is established using the login call.
Header Paramter

Session- > a session in Intellicus on which this call will run.

Logout
This APl is needed to logout from REST API access.

This call ends a session identified by the sessionid and expires that session. This session is the one
that was established using the login call.

Pattern
/rest/logout
Method
GET
Parameters
Name Description Type Default
sessionid* Session in Intellicus on which this call will Request header | None
run.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

48

Example:
GET http://<IP>:<Port>/intellicus/rest/logout

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed.

Organization

getOrganizationList

This APl is used to get the list of all organizations present in the Intellicus repository.
Pattern

[rest/org

Method

GET

Parameters

Name Description Type Default

sessionid* The sessionid in which user is working Request header | None

Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

Example:

GET http://<IP>:<Port>/intellicus/rest/org

API Result with XML/JSON containing list of the organizations.
GetOrganizationObject

This APl is used to get the object of organization present in the Intellicus repository.
Pattern

/rest/org/{orgld}

Method

49

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
orgld* The ID of the organization whose object we Path None
want to get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:
GET http://<IP>:<Port>/intellicus/rest/org/TestOrg
createOrganization
This APl is required to create new organization.
Pattern
/[rest/org
Method
POST
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Orgld* Name of Organization you want to create. formParam None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

POST http://<IP>:<Port>/intellicus/rest/org

50

Post Paramters

e Orgld:TestOrganization

deleteOrganization

This APl is used to delete an existing organization from the Intellicus repository.

Pattern

/rest/org/{orgld}

Method
DELETE

Request body

content type*

application/x-www-form-urlencoded

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
orgld* The ID of the organization which is to be deleted. | Path None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/org/TestOrg

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had

failed.

Category

getCategoryList

This APl is used to get the list of all categories present in the Intellicus repository.

51

Pattern

/[rest/category

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/category

API Result with XML/JSON containing list of the categories.

getSubCategoryList

This APl is used to get the list of all Sub categories presenting the given Category in the Intellicus repository.

Pattern

/rest/category/categoryld/{categoryld}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request None

header
categoryld® The ID of the category whose sub category we Path None
want to get.

52

Accept* Type of the response either JSON or XML. Request XML

o o header
(Application/xml or Application/Json)

Example:
GET http://<IP>:<Port>/intellicus/rest/category/categoryld/571937DE993490CFF371470A44BT7E

API Result with XML/JSON containing list of the sub categories inside a category.

getCategoryObject
This APl is used to get the object of category present in the Intellicus repository.
Pattern

/rest/category/{categoryld}

Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
categoryld® The ID of the category whose object we want to Path None
get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/category/571937DE993490CFF371470A44BTE

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed.

53

createCategory

This APl is required to create new category.

Pattern
[rest/category
Method
POST
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
categoryName* Name of category you want to create. FormParam None
isPublic* Category should be public or not.(value should | FormParam None
be true/false)
isHidden* Category should be hidden or not.(value FormParam None
should be true/false)
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

POST http://<IP>:<Port>/intellicus/rest/category

Post Paramters

categoryName: TestCategory

54

isPublic: true
isHidden: false

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request has
failed.

deleteCategory
This APl is used to delete an existing category from the Intellicus repository.
Pattern

[rest/category/{categoryld}

Method

DELETE

Request body
content type* application/x-www-form-urlencoded

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
categoryld® The ID of the category which is to be deleted. Path None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/category/571937DE-993490CFF37-1470A44B7E

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

55

User

getUserList

This APl is used to get list of users for the given organization in the Intellicus Repository. User is required to

provide the organization id, whose list of users, the requesting user wants to retrieve.

Pattern
/rest/user/
Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request None
header
orgld* Name of organization whose users lististo | QueryParam None
get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/user?orgld=TestOrg

API Result with XML/JSON containing list of users for the given organization Id.

getUserObject
This APl is used to get the object of user present in the Intellicus repository.
Pattern

/rest/user/{userld}

56

Method

GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
userld* The ID of the user whose object we want to get. Path None
orgld* The ID of the organization whose user’s object QueryParam None
we want to get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/user/User1?orgld=TestOrg

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed. The XML contains System privileges and access rights. Details of System privileges and access rights

are present in Appendix-2.

createUser

This APl is required to add new user in the Intellicus repository.
Pattern

/rest/user

Method

POST

57

Parameters

Name Description Type Default
sessionid* The sessionid in which user is working Request None
header
userld* Name of user you want to create. formdata None
password* Password to be assigned formdata None
orgld* Name of the organization in which youwant | formdata None
to add user.
isHostAppAuthentication® | To set authentication type as host app or formdata None
not.(value should be true/false)
Accept* Type of the response either JSON or XML. Request XML
o o header
(Application/xml or Application/Json)

Example:

POST http://<IP>:<Port>/intellicus/rest/user
Post Paramters

userld:Mike

password: abcd1234

orgld: Intellica

isHostAppAuthentication: false

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request has
failed.

deleteUser
This APl is used to delete an existing user from the Intellicus repository.
Pattern

58

/rest/user/{userld}

Method
DELETE
Request body
content type* application/x-www-form-urlencoded
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
userld* The ID of the user which is to be deleted. Path None
orgld* The ID of theorganization of which user isto QueryParam None
be deleted.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/user/Userl?orgld=TestOrg

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had

failed.

Role

getRoleList

This APl is used to get the list of all Roles present in Intellicus Repository.

Pattern
/rest/role/
Method
GET

Parameters

59

Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
orgld* Name of organization whose role list is to get. queryparam None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

Example:

GET http://<IP>:<Port>/intellicus/rest/role?orgld=TestOrg

API Result with XML/JSON containing list of roles for the given organization Id.

getRoleObject

This APl is used to get the object of user present in the Intellicus repository.

Pattern

/rest/role/{roleld}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request None

header
roleld* The ID of the role whose object we want to Path None
get.

60

orgld* The ID of the organization whose object role’s | QueryParam None
we want to get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/role/Role1?orgld=TestOrg

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had

failed.

createRole

This APl is required to add new role in the Intellicus repository.

Pattern
Irest/role
Method
POST
Parameters
Name Description Type Default
sessionid * The sessionid in which user is working Request header | None
roleld™ Id of role you want to create. formdata None
orgld* Name of the organization in which youwantto | formdata None
add role.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

POST http://<IP>:<Port>/intellicus/rest/role

61

Post Paramters

e roleld:RoleTest
e orgld: TestOrg

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request has
failed.

deleteRole
This APl is used to delete an existing role from the Intellicus repository.
Pattern

/rest/role/{roleld}

Method
DELETE
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
roleld* The ID of the role which is to be deleted. Path None
orgld* The ID of the organization in which the role to be Queryparam None
deleted is present.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/role/Rolel?orgld=TestOrg

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

62

Dashboard

getDashboardList

This APl is used to get the list of all Dashboards present in Intellicus Repository.
Pattern

/rest/dashboard

Method

GET

Parameters

Name Description Type Default

sessionid* The sessionid in which user is working Request header | None

Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

Example:
GET http://<IP>:<Port>/intellicus/rest/dashboard

API| Result with XML/JSON containing list of all the dashboards.

getDashboardObject

This APl is used to get the object of the given Dashboard present in the Intellicus repository.
Pattern

/rest/dashboard/{dashboardld}

Method

GET

Parameters

Name Description Type Default

sessionid* The sessionid in which user is working Request header | None

dashboard|d* The ID of the dashboard whose object we want Path None
to get.

Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

Example:
GET http://<IP>:<Port>/intellicus/rest/dashboard/14345370998146127060052192759078

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

getDashboardFromCategory
This APl is used to get the list of Dashboard from the given category present in the Intellicus repository.
Pattern

/rest/dashboard/categoryld/{categoryld}

Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
categoryld* The ID of the category whose dashboard listwe | QueryParam None
want to get.

64

Accept*

Type of the response either JSON or XML.

(Application/xml or Application/Json)

Request header

XML

Example:

GET http://<IP>:<Port>/intellicus/rest/dashboard/categoryld/ 571937DE-9934-90CB-FFD0-371470A44B7E

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had

failed.

getDashboardPreference

This APl is used to get the list of the Dashboards set in its Preferences.

Pattern

/rest/dashboard/dashboardpreference

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/dashboard/dashboardpreference

API Result with XML/JSON containing list of the dashboards set in its preferences.

deleteDashboard

This APl is used to delete an existing dashboard from the Intellicus repository.

65

Pattern

/rest/dashboard/{dashboardld}

Method

DELETE

Request body
content type* application/x-www-form-urlencoded

Parameters
Name Description Type Default
Sessionid* The sessionid in which user is working Request None

header
dashboardld* The ID of the dashboard which is to be deleted. | Path None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/dashboard/14345370998146127060052192759078

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had

failed.

DashboardWidget

getDashboardWidgetList

This APl is used to get the list of all Dashboards widgets present in Intellicus Repository.

Pattern

/rest/dashboardWidget

Method

GET

66

Parameters

Name Description Type Default

sessionid* The sessionid in which user is working Request header | None

Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

Example:
GET http://<IP>:<Port>/intellicus/rest/dashboardWidget

API Result with XML/JSON containing list of all the dashboards widgets.

getDashboardWidgetinCategory

This APl is used to list the dashboard widgets present in specified category in the Intellicus repository.

Pattern

/rest/dashboardWidget/ categoryld /{categoryld}

Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
categoryld® The ID of the category whose dashboard Path None
widget list we want to get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

67

Example:

GET http://<IP>:<Port>/intellicus/rest/dashboardWidget/categoryld/571937DE-9934-90CB-FFDO-
371470A44B7E

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed.

Report

getALLReportList

This APl is used to get the list of all reports present in Intellicus Repository.
Pattern

/rest/report?show=[“STUDIO”]||[“ADHOC”]|[“OLAP”]

Method

GET

68

Parameters

Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
show* This can take the following value- QueryParam NONE
All: all reports
STUDIO: only standard report list will be shown
ADHOC: only ADHOC report list will be shown
OLAP: only OLAP report list will be shown
Accept® Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/report/?show=0LAP

API Result with XML/JSON containing list of the reports.

getReportListForCategory

This APl is used to get the list of all reports present in a particular category Intellicus Repository.

Pattern

/rest/report/categoryld/{categoryld}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None

69

categoryld* Id of the category of which report list is needed. | path NONE

show* This can take the following value- QueryParam NONE
All: all reports
STUDIO: only standard report list will be shown
ADHOC: only ADHOC report list will be shown
OLAP: only OLAP report list will be shown

Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

Example:

GET http://<IP>:<Port>/intellicus/rest/report/categoryld/571937DE-9934-90CB-FFD0-371470A44BTE

API Result with XML/JSON containing list of the reports in the given category.

getReportObject

This APl is used to get the object of the report present in the Intellicus repository.

Pattern

[rest/report/{reportid}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
reportld* The ID of the report whose object we want to Path None

get.

Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

70

Example:
GET http://<IP>:<Port>/intellicus/rest/report/571937D993490CBFFD371470A44BTE

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed. The XML contains System privileges and access rights. Details of System privileges and access rights

are present in Appendix-2.

GetSavedReportList
This Java APl is used to get the list of Saved Reports in a particular Report.

[rest/report/saved/{reportld}

Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
reportld* Id of the report of which saved report list is path NONE
needed.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/report/saved/571937DE993490CBFFD371470A44B7E

API Result with XML/JSON containing list of the saved reports in the given report id.

deleteReport

This APl is used to delete an existing report from the Intellicus repository.

71

Pattern

[rest/report/{reportid}

Method

DELETE

Request body
content type* application/x-www-form-urlencoded

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
reportld* The ID of the report which is to be deleted. Path None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/report/ 9D5BD0C3-99B8-8ACE-8FE5-724131D79124

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

Database connection Management

getDBConnection

This APl is used to get the list of all database connections present in Intellicus Repository.
Pattern

/rest/dbConnection

Method

GET

Parameters

2

Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

Example:

GET http://<IP>:<Port>/intellicus/rest/dbConnection

API Result with XML/JSON containing list of the connections.

getConnectionObject

This APl is used to get the object of the given connection present in the Intellicus repository.

Pattern

/rest/dbConnection/{connName}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request None

header
connName* The name of the connection whose object we want | Path None
to get.
Accept* Type of the response either JSON or XML. Request XML
o o header
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/dbConnection/demoDB

73

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed.

deleteConnection
This APl is used to delete an existing connection from the Intellicus repository.
Pattern

/rest/dbConnection/{ connName}

Method
DELETE
Request body
content type* application/x-www-form-urlencoded
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
connName* The Name of the connection which is to be Path None
deleted.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/dbConnection/DemoDB

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

74

Report Object

getReportObjectList

This APl is used to get the list of all report objects present in Intellicus Repository.
Pattern

/rest/reportObject?type=[“query”]||[“parameter”]||[“cube”]

Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
type* This can take the following value- QueryParam NONE
QUERY: for query objects
PARAMETER: for parameter objects
CUBE: for cube objects
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/reportObject?type=CUBE

API Result with XML/JSON containing list of the report objects.

getReportObjectListForCategory

This APl is used to get the list of all report objects present in a particular category in Intellicus Repository.
Pattern

/rest/reportObject/category/{categoryld}

Method

75

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
categoryld* Id of the category of which report object list is Path param NONE
needed.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/reportObject/category/571937DE-9934-90CB-FFD0-371470A44B7E

API Result with XML/JSON containing list of the report objects in the given category.

getObjectofReportObject

This APl is used to get the object of the report object present in the Intellicus repository.

Pattern

/[rest/reportObject/{reportObjectType}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
reportObjectType* | The type of the report object which is to be Path None

deleted.

76

reportObjectname® | The name of the report object which is to be QueryParam None
deleted.

Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

Example:
GET http://<IP>:<Port>/intellicus/rest/reportObject/QUERY?reportObjectname=Q0_Name

API Result with state Status #SUCCEEDED, if request was successful. APl Result with state Status #FAILED, if
request had failed.

deleteReportObject
This APl is used to delete an existing report object from the Intellicus repository.
Pattern

/rest/reportObject/{reportObjectType}

Method
DELETE
Request body
content type* application/x-www-form-urlencoded
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request None
header
reportObjectType* | The type of the report object which is to be Path None
deleted.
reportObjectname® | The name of the report object which is to be QueryParam None
deleted.

7

Accept* Type of the response either JSON or XML. Request XML

o o header
(Application/xml or Application/Json)

Example:
DELETE http://<IP>:<Port>/intellicus/rest/reportObject/QUERY?reportObjectname=Q0_Name

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had
failed.

Schedule

getScheduleList

This APl is used to get the list of all report objects present in Intellicus Repository.
Pattern

/rest/schedule

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

Get http://<IP>:<Port>/intellicus/rest/schedule

API Result with XML/JSON containing list of the schedule.

78

getScheduleObject

This APl is used to get the object of the schedule present in the Intellicus repository.

Pattern

/rest/schedule/scheduleName

Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
scheduleName* | The name of the schedule whose object we want | Path None
to get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/schedule/TestSchedule

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had

failed.

deleteSchedule

This APl is used to delete an existing schedule from the Intellicus repository.

Pattern

/rest/schedule/{scheduleName}

Method
DELETE

Request body

79

content type* application/x-www-form-urlencoded
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
scheduleName* The name of the schedule which is to be Path None
deleted.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/schedule/TestSchedule

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had

failed.

Task

getTaskList

This APl is used to get the list of all tasks present in Intellicus Repository.

Pattern
/rest/task
Method

GET

80

Parameters

Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:
GET http://<IP>:<Port>/intellicus/rest/task
API Result with XML/JSON containing list of the task.
getTaskObject
This APl is used to get the object of a task present in the Intellicus repository.
Pattern
/rest/task/{taskName}
Method
GET
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
taskName* The name of the task whose object we want to Path None
get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

81

Example:
GET http://<IP>:<Port>/intellicus/rest/task/TestTask

API Result with state Status #SUCCEEDED, if request was successful. APl Result with state Status #FAILED, if
request had failed.

deleteTask
This APl is used to delete an existing task from the Intellicus repository.
Pattern

/rest/task/{taskName}

Method

DELETE

Request body
content type application/x-www-form-urlencoded

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
taskName* The name of the task which is to be deleted. Path None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/task/TestTask

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

82

ScheduleJob

getScheduleJobList

This APl is used to get the list of all scheduled job present in Intellicus Repository.
Pattern

/rest/scheduleJob

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

Example:

GET http://<IP>:<Port>/intellicus/rest/scheduleJob

API Result with XML/JSON containing list of the scheduled job.

getScheduleJobObject

This APl is used to get the object of a scheduledJob present in the Intellicus repository.

Pattern

/rest/scheduleJob/{scheduleJobName}

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None

83

scheduleJobName* | The name of the scheduledJob whose object Path None
we want to get.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/scheduleJob/TestJob

API Result with Status #SUCCEEDED, if request was successful. API Result with Status #FAILED, if request had

failed.

deleteScheduleJob

This APl is used to delete an existing scheduled job from the Intellicus repository.

Pattern

/rest/scheduleJob/scheduleJobName

Method
DELETE
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
scheduleJobName* | The name of the scheduled job which is to be Path None
deleted.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/scheduleJob/TestJob

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had

failed.

84

Entities

copyEntities

This APl is used to copy entity present in Intellicus Repository.
Pattern

/rest/entities/copy

Method
PUT
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
entityType* Type of entity you want to copy. (Example: queryParam None
QUERY, PARAMETER, ANALYTICAL)
entitylds* Id of the given type of entity. (Ids should be queryParam None
comma seperated)
destCategoryld* Id of the destination category, where entities queryParam None
will be moved.
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

PUT http://<IP>:<Port>/intellicus/rest/entities/copy?entitylds=
12603516809689203129192914431493,218491B2-DF5A-A4DB-8829-
B1E2F7F15C0C,13874593138006172260434555452223,12591419101541192168102272352078&entitiType=Q
UERY&destCategoryld=571937DE-9934-90CB-FFD0-371470A44B7E

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had
failed.

85

moveEntities
This APl is used to move entity present in Intellicus Repository.
Pattern

/rest/entities/move

Method
PUT
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
entityType* Type of entity you want to copy. (Example: queryParam None
QUERY, PARAMETER, ANALYTICAL)
entitylds* Id of the given type of entity. (Ids should be queryParam None
comma seperated)
destCategoryld | Id of the destination category, where entities will | queryParam None
be moved.
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

Example:

PUT http://<IP>:<Port>/intellicus/rest/entities/move?entitylds=
12603516809689203129192914431493,218491B2-DF5A-A4DB-8829-

B1E2F7F15C0C,13874593138006172260434555452223,12591419101541192168102272352078&entitiType=PA

RAMETER&destCategoryld= 571937DE-9934-90CB-FFD0-371470A44B7E

API Result with Status #SUCCEEDED, if request was successful. APl Result with Status #FAILED, if request had

failed.

86

deleteEntities
This APl is used to delete entity present in Intellicus Repository.
Pattern

/rest/entities/delete

Method
DELETE
Request body
content type* application/x-www-form-urlencoded
Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
entityType* Type of entity you want to copy. (Example: queryParam None
QUERY, PARAMETER, ANALYTICAL)
entitylds* Id of the given type of entity. (Ids should be queryParam None
comma seperated)
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/entities/delete?entitylds=
12603516809689203129192914431493,218491B2-DF5A-A4DB-8829-
B1E2F7F15C0C,13874593138006172260434555452223,12591419101541192168102272352078&entitiType=Q
UERY

API Result with state Status #SUCCEEDED, if request was successful. APl Result with state Status #FAILED, if
request had failed.

87

OLAP

getDimensionList

This APl is used to get dimension list of a cube from Intellicus Repository.

Pattern

/rest/olap

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
cubeName* Name of the cube queryParam None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/olap?cubeName=TestCube

API Result with XML/JSON containing list of the dimensios in the cube.

getMeasurelList

This APl is used to get measure list of a cube from Intellicus Repository.

Pattern

/rest/olap/Measure

Method

GET

Parameters

88

Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
cubeName* Name of the cube queryParam None
Accept* Type of the response either JSON or XML. Request header | XML
(Application/xml or Application/Json)

Example:

GET http://<IP>:<Port>/intellicus/rest/olap/Measure?cubeName=TestCube

API Result with XML/JSON containing list of the measures in the cube.

getOlapData

This APl is used to get olap data of a cube from Intellicus Repository.

Pattern

/rest/olap/olapData

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request None

header

cubeName* Name of the cube queryParam None
cubeld Id of the cube. queryParam None

89

Measure

Measure name in the cube.In case of multiple
measures, measure name should be comma

separated. Example:- order_no,income

queryParam

None

rowLevelDimension

Dimension to be on row level. In case of
multiple Dimensions, Dimension name should

be comma separated.

queryParam

None

columnLevelDimension

Dimension to be on column level.. In case of
multiple Dimensions, Dimension name should

be comma separated.

queryParam

None

filterName

Filter list should be in the format:

DimensionName::LevelName::comma

seperatedvalue.

Example:-Insured::Country::Australia,Africa

queryParam

None

Accept*

Type of the response either JSON or XML.

(Application/xml or Application/Json)

Request
header

XML

Example:

GET http://<IP>:<Port>/intellicus/rest/olap/olapData?cubeName=AssetMgmt-

Insurance&cubeld=CUBE_OBJECT_13418448596848127031012183580027&Measure=Totallncome&rowLevel

Dimension=PolicyType&columnLevelDimension=PolicyName&filterName=Agency::Agency Name::'Chubb &

Son','Cumberland Mutual Fire Insurance','Fitchburg Mutual'~~Insured::Country::'Australia’

API Result with XML/JSON containing desired result.

BuildCube

This APl is used to build a cube in Intellicus Repository.

Pattern
/rest/olap
Method
PUT

Parameters

90

Name Description Type Default

sessionid* The sessionid in which user is working Request header | None
cubeld* Id of the cube queryParam None
cubeName* Name of the cube queryParam None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)

Example:
PUT http://<IP>:<Port>/intellicus/rest/olap?cubeld= cube120245&cubeName= TestCube

API Result with state Status #SUCCEEDED, if request was successful. APl Result with state Status #FAILED, if
request had failed.

getbuildStatus
This APl is to get build status of the cube from Intellicus Repository.
Pattern

/rest/olap/buildStatus

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
cubeld* Id of the cube QueryParam None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

91

GET http://<IP>:<Port>/intellicus/rest/olap?cubeld=TestCube

API Result with XML/JSON containing build status.

DeleteCube
This APl is used to delete a cube in Intellicus Repository.
Pattern

/rest/olap/{cubeName}

Method

DELETE

Request body
content type application/x-www-form-urlencoded

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
cubeName* Name of the cube queryParam None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

DELETE http://<IP>:<Port>/intellicus/rest/olap?cubeName= TestCube

API Result with state Status #SUCCEEDED, if request was successful. APl Result with state Status #FAILED, if
request had failed.

ReportExecution
RunReport
This APl is used to run reportin a particular format from Intellicus Repository.

Pattern

92

/rest/reportExec

Method

GET

Parameters
Name Description Type Default
sessionid* The sessionid in which user is working Request header | None
reportld* Id of the report queryParam None
reportFormat* Format of the report queryParam None
Accept* Type of the response either JSON or XML. Request header | XML

(Application/xml or Application/Json)
Example:

GET http://<IP>:<Port>/intellicus/rest/reportExec?reportld=C76816F4-CA91-E6CO-
C90F26C53EC542C&reportFormat=PDF

API Result with state Status #SUCCEEDED, if request was successful. APl Result with state Status #FAILED, if
request had failed.

93

4 Java API

Intellicus Java APIs can be used for performing activities like User management, and Report Management in

Intellicus.

To use the Java APIs of Intellicus, following jars should be placed in class path of the web application.

e intellica.jar
o logdij.jar
e xerceslmpl.jar
e xmlParserAPls.jar
These jars are provided with intellicus setup. Following is given the path for jar file:

<Intellicus Install path>\APIs

Java Doc

The Java Doc for the APIs is available at FTP locaton: ftp://demo:demo@ftp.intellicus.com/api/ .

Mandatory Step to Use Java APIs

Initialize Report Client

Configuration

Intellicus client JAVA APIs are configured by a file “ReportClient.properties”.

This file must be present in the JAVA CLASS_PATH variable of the host java application.

During initialization action, the report client component reads the configuration file and keeps the

configuration in memory.

Import

Host java application class has to import the following classes, to initialize the Report Client.
import com.intellica.client.init.ReportClient

import java.io.FileInputStream

import java.io.BufferedInputStream
import java.io.InputStream

The initialization action is to be performed once in the lifetime of application.The initialization would be

done according to the configurations set in the ReportClient.properties file

94

ftp://demo:demo@ftp.intellicus.com/api/

Init

Init method is used to initialize the Intellica client SDK with the values from the ReportClient.properties file.
This properties file contains configurations for Report Engine Interface.

InputStream is= new BufferedInputStream (new FileInputStream
("<ReportClient.properties AbsolutePath>"));

//Static method.
ReportClient.init (is);

Ifitis required to create the logs at desired location, set the absolute or relative path in the INTERA_HOME
property of the ReportClient.Properties file.

Eg- If ReportClient.properties is placed at location c://client/config/, (i.e. client complete folder is copied

down in c:// drive),
InputStream is= new BufferedInputStream(new

FileInputStream("C://client/config/ReportClient.properties"));
com.intellica.client.init.ReportClient.init(is);

then INTERA_HOME property should be set as -
Absolute Path-

//setting absolute path for logs
INTERA_HOME=C://client

Relative Path-

//setting relative path for logs
INTERA_HOME-=../../../client

(This path is basically relative to jakarta/bin/, therefore, if we consider that intellicus is installed at loc-
c://program files/intellicus/jakarta/bin, then relative path for logs(i.e. C://client/logs/) with respect to bin
would be ../../../client)

Initialize Requestor User context

Requestor User
A Requestor User is the user, who is requesting any action to the Intellicus system.
A com.intellica.client.common.UserInfo class object represents a user in Intellicus.

The Userlnfo class has the following attributes.

95

Attribute Description

userld User ID
password Password

orglD Organization ID
sessionld Session ID

securityDescriptor | Security Descriptor string

customerld Customer ID for service provide deployments
location Location ID

locale Locale

dbName Database Name

Intellicus mode of authentication uses User ID, Password and Org ID as mandatory attributes to

authenticate a user and authorize that user’s actions.

A host application that takes over authentication responsibilities can use any of the above attributes to

authenticate.

Import

Java Application class has to import the following class to store the login user information and check for

Authorization.

import com.intellica.client.common.UserInfo;

Userlinfo
The UserInfo object acts as a carrier to all above attributes in such case.

So, in all the use cases discussed below, host application has to create an object of UserInfo class and pass it

in all the method calls.

UserInfo requestorUserInfo = new UserInfo("John","john","Orgl");

96

Note: For performing any admin activity like user management at Intellicus,
requestor user should be admin user at Intellicus.

Use Cases

User Management Actions
Import

//User Management imports

import com.intellica.client.security.SecurityManager;
import com.intellica.client.exception.ISecurityException;
import com.intellica.client.security.Authentication;
//0rganization specific imports

import com.intellica.client.security.OrgInfo;

//User/Role specific imports

import com.intellica.client.security.RoleInfo;

import com.intellica.client.common.Enums.SecurityTypes.ReportPrivileges;
import com.intellica.client.common.Enums;

import java.util.Vector;

import java.util.HashMap;

Organization
GetOrgByld
This Java APl is used to get an Organization for given Organization Id.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Organization Management/ GetOrgByld.java for

sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor UserInfo.

3. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

4. Getthe Organization by Orgld and get its various details.
Method: getOrganizationByld

public getOrganizationById(java.lang.String orgId, userInfo) throws

Method will return the organization Info for given orgld

97

Parameters:

e orgld: Id of the requested OrgInfo object
e userlnfo: The current user details

Returns:
Orglnfo object having the given orgld (may return null)

//This will get the Information about any existing Organization
String organisationId="Test";
OrgInfo org0Obj = sMgr.getOrganizationById(organisationlId,
requestorUserInfo);
System.out.println ("OrganizationName: "+orgObj.getOrgId());
System.out.println("Description: "+orgQObj.getOrgDescription());
System.out.println ("OrganizationMapType: "+orgObj.getMapType());
System.out.println("Authorization mode: "
+org0bj.getAuthorizeMode());
System.out.println("AuthenticationObject:
"+orgObj.getAuthenticationObj());

Get Users list for Organization

This Java APl is used to get list of users for the given organization in the Intellicus Repository. User is

required to provide the organisation id, whose list of users, the requesting user wants to retrieve.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Organization

Management/GetUserListForOrg.java for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userlnfo.

Create a SecurityManager class object for getting the controller information for all Administration

related operations.

SecurityManager sMgr = SecurityManager.getInstance();
Get the Arraylist containing all users in the given Organization
Method: getUserListForOrganization

public java.util.ArraylList

getUserListForOrganization(java.lang.String orgId,userInfo) throws

This method returns the list of users for the given Organization ID.

Parameters:

e Orgld: of the userinfo list to be retrieved.

Returns:

98

ArrayList of UserInfo Bean class
rayList arrList=new ArraylList();

String orgId="Intellica";
arrList = sMgr.getUserListForOrganization(orgld, requestorUserInfo);

Get Organization List
This Java APl is used to get the list of all organizations present in the Intellicus repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Organization Management/ GetOrgList.java for

sample code of this use case.

Steps:

1. Initialize Report Client.

2. Initialize Requestor Userlnfo.

3. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

4. Getthe Arraylist containing all users in the given Organization
Method: getOrgList

public java.util.ArraylList getOrgList(userInfo) throws

This method returns the list of all organizations created in Intellicus repository.
Returns:

ArrayList of Orginfo objects.

//An arraylist created to hold the list of organizations in it.
ArrayList arrList=new ArrayList();

//Method returns list of all organizations in Intellicus repository
arrList=sMgr.getOrgList(requestorUserInfo);

Add Organization
This Java APl is used to add a new organization in the Intellicus Repository and set the authentication mode.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Organization Management/AddOrg.java for

sample code of this use case.

Also, you may refer to AddCallbackOrg.java for creating an organization whose authentication check is

performed by Callback Mechanism.

99

Steps:

1. Initialize Report Client.
2. Initialize Requestor UserlInfo.
3. Create instance of OrgInfo.

String organisationId="Test";
OrgInfo addOrg=new OrgInfo(organisationId);

4. SetAuthentication mode.
Method: setAuthenticateMode
public void setAuthenticateMode(int authenticateMode)
Authentication Mode Id values
1=Intellicus
(com.intellica.client.common.Enums.SecurityTypes.Authentication. REPORTINGSYS)
2= External Application
(com.intellica.client.common.Enums.SecurityTypes.Authentication. EXTERNALAPP)
3=Host Application
(com.intellica.client.common.Enums.SecurityTypes.Authentication. HOSTAPP)
4= Callback
(com.intellica.client.common.Enums.SecurityTypes.Authentication. CALLBACK)
This identifies who will authenticate the users/roles belonging to this organization.
Parameters:
authenticateMode - : Authentication Mode Id's value
Authentication authInfo = new Authentication();
authInfo.setAuthenticateMode(com.intellica.client.common.Enums.SecurityTypes

.Authentication.HOSTAPP);
addOrg.setAuthenticationObj (authInfo);

5. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

6. Add the Organization.
Method: addOrganization

public void addOrganization(orgInfo, userInfo) throws

100

This method adds a new Organization at the Report Engine.

Parameters:

e OrglInfo: The Organization details
e UserInfo: The User details

sMgr.addOrganization(addOrg, requestorUserInfo);

Modify Organization
This Java APl is used to modify the Organization’s details.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Organization Management/ ModifyOrg.java for

sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor Userlnfo.
3. Getthe Organization i.e. to be deleted By its Organization Id.

String organisationId="Test";
0rgInfo modOrg=sMgr.getOrganizationById(organisationId, requestorUserInfo);

4, Setthe attributes of Organization

modOrg.setCanDelete(true);
String description="THIS IS A TEST ORGANIZATION";
modOrg.setOrgDescription(description);

5. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

6. Modify the Organization.
Method: modifyOrganization

public void modifyOrganization(orgInfo, userInfo) throws

This method modifies an Organization at the Report Engine

Parameters:

e orginfo: The Organization details
e userinfo: The current user

sMgr.modifyOrganization(modOrg, requestorUserInfo);

101

Delete Organization

This Java APl is used to delete an existing organization from the Intellicus repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Organization Management/DeleteOrg.java for

sample code of this use case.

Steps:

N

Initialize Report Client.

Initialize Requestor UserInfo.

Get the Organization i.e. to be deleted By Organization Id.
String organizationId="Test";

OrgInfo delOrg = sMgr.getOrganizationById(organizationId,
requestorUserInfo);

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Delete the Organization.
Method: deleteOrganization

public void deleteOrganization(orgInfo, userInfo) throws

This method deletes an Organization at the Report Engine from the Intellicus Repository.

Parameters:

e orglnfo: The Organization details
e userinfo: The current user details

sMgr.deleteOrganization(delOrg, requestorUserInfo);

Assign Category Privileges to Organization

This Java APl is used to assign the Access privileges of a Category to the specific Organization.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/

AssignCategoryPrivilegesToOrg.java for sample code of this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor Userlnfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

102

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of AppInfo that contains the Organization to which the access rights are to be
assigned.

String userId="";

String OrgId="TestOrg";

//AppType for which the privileges are to be set, "" for Org, "USER"
for User and "ROLE" for Role

String appType = "";
//Create instance of AppInfo that contains entity for which access rights
are to be assigned
AppInfo appInfo = new AppInfo(userld,Orgld,appType);

Create instance of Entitylnfo which contains entity whose access rights are assigned on Category.

//Set desired entity : CATEGORY/REPORT/Q0/P0/CUBEOBJECT
/DASHBOARD2/DASHBOARD WIDGET/DBCONNECTION
EntityInfo entityInfo=new EntityInfo(catId,"CATEGORY");

Create object of EntityAccessRight and set accessrights

EntityAccessRight ear=new EntityAccessRight();
ear.setAppInfo(appInfo);
/* access level can have below possible values-
FULLACCESS, PARTIALACCESS, DENYACCESS, NONEACCESS
* public void setAccesslevel(int accesslLevel)
* @param accesslLevel : access level can be 0/1/2/3
*/
ear.setAccesslLevel (Enums.SecurityTypes.AccesslLevel.PARTIALACCESS);
ear.setAccessRightGrants("0,1,2");

Setting access rights for Reports, Dashboards under this category

//Access Rights for Reports under this category
EntityGroupAccessRight reportEAR=new EntityGroupAccessRight();
reportEAR.setType("REPORT") ;

reportEAR.setAccessLevel(1l);//0 for deny, 1 for Full, 2 for Partial
reportEAR.setGrants("10,12,14");
ear.addEntityGroupAccessRight (reportEAR) ;

//Access Rights for Dashboards under this category
EntityGroupAccessRight dashboardEAR=new EntityGroupAccessRight();
dashboardEAR.setType ("DASHBOARD2") ;
dashboardEAR.setAccessLevel(1l);//0 for deny, 1 for Full, 2 for Partial
ear.addEntityGroupAccessRight (dashboardEAR) ;
ear.setOpCode("REPLACE");

Method: grantEntityPrivileges

This API allows the user to assign access rights information to a user/role/organization or Everyone

on an entity.

Syntax

103

public void grantEntityPrivileges(EntityInfo entity,
EntityAccessRight entityAccessRight, UserInfo userInfo)throws
ISecurityException.

Parameters:

e entity - The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class..

e entityAccessRight: The entityAccessRight object. This object should contain the Appinfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

e UserlInfo: Details of current user who is providing access rights.

e Throws: ISecurityException: - If the request cannot be performed successfully. This
happens - 1.if connection can't be established with the engine or 2.if read or write
operation cant be performed from or to the engine. 3.If some error has occured while
executing the request on the engine. 4.1f the response xml obtained from server cannot be
parsed

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, requestorUserInfo);

Assign Connection Privileges to Organization

This Java APl is used to assign the Connection privileges to the specific Organization.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/

AssignConnectionPrivilegesToOrg.java for sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.

Initialize Requestor UserInfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of Applinfo that contains the Userld, Organization of the user to which the access
rights are to be assigned.

String appId="";

String OrgId="TestOrg";

//AppType for which the privileges are to be set, "" for Org, "USER"
for User and "ROLE" for Role

String appType = "";
//Create instance of AppInfo that contains entity for which access rights
are to be assigned
AppInfo appInfo = new AppInfo(userld,Orgld,appType);

104

Create instance of Entitylnfo which contains entity whose access rights are assigned on Category.

// Connection whose privileges are to be set for the specified Organization
String entityId="DemoReportDB";//Category Id on which AccessRights will be
given to the user;

//Set desired entity :
CATEGORY/REPORT/Q0/P0/CUBEOBJECT/DASHBOARD2/DASHBOARD WIDGET/DBCONNECTION
EntityInfo entityInfo=new EntityInfo(entityId, "DBCONNECTION");

Create object of EntityAccessRight and set accessrights

EntityAccessRight ear=new EntityAccessRight();
ear.setAppInfo(appInfo);

/* access level can have below values possible.
& Full Access

* Deny Access

**/

ear.setAccesslLevel (Enums.SecurityTypes.AccesslLevel.FULLACCESS) ;
ear.setOpCode("REPLACE");

Method: grantEntityPrivileges

This APl allows the user to assign access rights information to a user/role/organization or Everyone

on an entity.

Syntax

public void grantEntityPrivileges(EntityInfo entity,
EntityAccessRight entityAccessRight, UserInfo userInfo)throws
ISecurityException.

Parameters:

e entity - The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class..

e entityAccessRight: The entityAccessRight object. This object should contain the AppInfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

e UserlInfo: Details of current user who is providing access rights.

e Throws: ISecurityException: - If the request cannot be performed successfully. This
happens - 1.if connection can't be established with the engine or 2.if read or write
operation cant be performed from or to the engine. 3.I1f some error has occured while
executing the request on the engine. 4.If the response xml obtained from server cannot be
parsed

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, requestorUserInfo);

105

User

Get User By Id

This Java APl is used to get User’s information for the given userid.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/GetUserByld.java for sample

code of this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor Userinfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Get the User by User Id.
Method: getUserByld

Public getUserById(java.lang.String userId, java.lang.String orgId,
userInfo) throws

This method returns the UserInfo class object having the given userld of the given orgld

Parameters:

e userld: Id of the requested UserInfo object.
e orgld: Organization Id of the requested user.
e userlnfo: The current user details.

Returns:
Userlnfo: object having the given userld (may return null)
String userId = “Mary”;

String orgIld = “MyOrg”;
UserInfo userInfo=sMgr.getUserById(userId, orgId , requestorUserInfo);

Add User (Create User)

This Java APl is used to create a new User in Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/ AddUser.java for sample

code of this use case.

Steps:

1.
2.

Initialize Report Client.
Initialize Requestor UserInfo.

106

3.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

4.

Create instance of new User and set its attributes.

String username = “Mary”;

String password = “123456";

String orgIld = “Orgl”;

UserInfo addUserInfo = new UserInfo(username, password, orgld);
// Optionally, make the user admin for that organization.
addUserInfo.setAdmin(true);

// Optionally, make the user Super admin.
addUserInfo.setSuperAdmin(true);

Add the User in Intellicus Repository.
Method: addUser

public void addUser(newUserInfo, userInfo) throws

Adds a new User at the Report Engine.

Parameters:

e newUserInfo: The new user or target user details.
e userlnfo: The current user details.

sMgr.addUser(addUserInfo, requestorUserInfo);

Assign Category Privileges to User

This Java APl is used to assign the Access privileges of a Category to the specific Organization.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/

AssignCategoryPrivilegesToOrg.java for sample code of this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor Userinfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of Applnfo that contains the Userld, Organization of the user to which the access
rights are to be assigned.

Also set AppType="USER"
String userId="Mary";

107

String OrgId="TestOrg";

//AppType for which the privileges are to be set, "" for Org, "USER"
for User and "ROLE" for Role

String appType = "USER";
//Create instance of AppInfo that contains entity for which access rights
are to be assigned
AppInfo appInfo = new AppInfo(userld,Orgld,appType);

Create instance of Entitylnfo which contains entity whose access rights are assigned on Category.

//Set desired entity : CATEGORY/REPORT/Q0/P0/CUBEOBJECT
/DASHBOARD2/DASHBOARD WIDGET/DBCONNECTION
EntityInfo entityInfo=new EntityInfo(catId,"CATEGORY");

Create object of EntityAccessRight and set accessrights

EntityAccessRight ear=new EntityAccessRight();
ear.setAppInfo(appInfo);
75 access level can have below possible values-
FULLACCESS, PARTIALACCESS, DENYACCESS, NONEACCESS
* public void setAccesslLevel(int accesslLevel)
* @param accesslLevel : access level can be 0/1/2/3
*/
ear.setAccessLevel (Enums.SecurityTypes.AccessLevel.PARTIALACCESS);
ear.setAccessRightGrants("0,1,2");

Setting access rights for Reports under this category

//Access Rights for Reports under this category
EntityGroupAccessRight reportEAR=new EntityGroupAccessRight();
reportEAR.setType("REPORT") ;

reportEAR.setAccessLevel(1l);//0 for deny, 1 for Full, 2 for Partial
reportEAR.setGrants("10,12,14");

ear.addEntityGroupAccessRight (reportEAR);

ear.setOpCode("REPLACE");

Method: grantEntityPrivileges

This API allows the user to assign access rights information to a user/role/organization or Everyone

on an entity.

Syntax

public void grantEntityPrivileges(EntityInfo entity,
EntityAccessRight entityAccessRight, UserInfo userInfo)throws
ISecurityException.

Parameters:

e entity - The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class..

108

e entityAccessRight: The entityAccessRight object. This object should contain the AppInfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

e UserlInfo: Details of current user who is providing access rights.

e Throws: ISecurityException: - If the request cannot be performed successfully. This
happens - 1.if connection can't be established with the engine or 2.if read or write
operation cant be performed from or to the engine. 3.If some error has occured while
executing the request on the engine. 4.1f the response xml obtained from server cannot be
parsed

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, requestorUserInfo);

Assign Report Privileges To User

This Java APl is used to set the Report Access Privileges for a particular user. The user would require to

provide its identity i.e. user Info and the Report for which the access rights are to be given.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/

AssignReportPrivilegesToUser.java for sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.

Initialize Requestor UserInfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of Appinfo that contains the Userld, Organization of the user to which the access
rights on report are to be assigned.

Also set AppType="USER”
//Set appIld = <ROLE _NAME> and appType="ROLE”

String appId="Mary";

String OrgId="TestOrg";

//AppType for which the privileges are to be set, "" for Org, "USER"
for User and "ROLE" for Role

String appType = "USER";

//Create instance of AppInfo that contains entity for which access rights
are to be assigned
AppInfo appInfo = new AppInfo(appld,0rgld,appType);

Create instance of Entitylnfo which contains entitylD/ReportID for which access rights are to be
assigned

String reportId="D07131A2-87AA-154E-6E17-6079C9AFD176";

109

//Set desired entity : CATEGORY/REPORT/Q0/P0/CUBEOBJECT
//DASHBOARD2/DASHBOARD WIDGET/DBCONNECTION
EntityInfo entityInfo=new EntityInfo(reportId,"REPORT");

6. Create object of EntityAccessRight and set accessrights

EntityAccessRight ear=new EntityAccessRight();
ear.setAppInfo(appInfo);
/* access level can have below possible values-
FULLACCESS, PARTIALACCESS, DENYACCESS, NONEACCESS
* public void setAccesslevel(int accesslLevel)

* @param accesslLevel : access level can be 0/1/2/3
*/
ear.setAccesslLevel (Enums.SecurityTypes.AccesslLevel.PARTIALACCESS);
ear.setAccessRightGrants("0,2,4,6,7,8,12");
ear.setOpCode("REPLACE");

Method: grantEntityPrivileges

This API allows the user to assign access rights information to a user/role/organization or Everyone

on an entity.

Syntax

public void grantEntityPrivileges(EntityInfo entity,
EntityAccessRight entityAccessRight, UserInfo userInfo)throws
ISecurityException.

Parameters:

e entity - The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class..

e entityAccessRight: The entityAccessRight object. This object should contain the AppInfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

e Userlnfo: Details of current user who is providing access rights.

e Throws: ISecurityException: - If the request cannot be performed successfully. This
happens - 1.if connection can't be established with the engine or 2.if read or write
operation cant be performed from or to the engine. 3.I1f some error has occured while
executing the request on the engine. 4.If the response xml obtained from server cannot be
parsed

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, requestorUserInfo);

Assign Entity Privileges to User

This Java APl is used to assign the Entity privileges to the specific User.

110

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/

AssignEntityPrivilegesToUser.java for sample code of this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor Userinfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of Appinfo that contains the Userld, Organization of the user to which the access
rights are to be assigned.

Also set AppType="USER”

String userId="Mary";

String OrgId="TestOrg";

//AppType for which the privileges are to be set, "" for Org, "USER"
for User and "ROLE" for Role

String appType = "USER";
//Create instance of AppInfo that contains entity for which access rights
are to be assigned
AppInfo appInfo = new AppInfo(userId,OrgId,appType);

Create instance of Entitylnfo which contains entity whose access rights are assigned on Category.

// Query ID whose System Privileges are to be set for the specified user.
String entityID="SalesQuery"”;

//Set desired entity : CATEGORY/REPORT/Q0/PO/CUBEOBJECT
//DASHBOARD2/DASHBOARD WIDGET/DBCONNECTION
EntityInfo entityInfo=new EntityInfo(entityID,"Q0");

Create object of EntityAccessRight and set accessrights

EntityAccessRight ear=new EntityAccessRight();
ear.setAppInfo(appInfo);
Ve access level can have below possible values-
FULLACCESS, PARTIALACCESS, DENYACCESS, NONEACCESS
* public void setAccesslevel(int accesslLevel)
* @param accesslLevel : access level can be 0/1/2/3
*/
ear.setAccesslLevel (Enums.SecurityTypes.AccessLevel.PARTIALACCESS);
ear.setAccessRightGrants("0,2");

Method: grantEntityPrivileges

This API allows the user to assign access rights information to a user/role/organization or Everyone

on an entity.

Syntax

public void grantEntityPrivileges(EntityInfo entity,

111

EntityAccessRight entityAccessRight, UserInfo userInfo)throws
ISecurityException.

Parameters:

e entity - The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class..

e entityAccessRight: The entityAccessRight object. This object should contain the AppInfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

e UserlInfo: Details of current user who is providing access rights.

e Throws: ISecurityException: - If the request cannot be performed successfully. This
happens - 1.if connection can't be established with the engine or 2.if read or write
operation cant be performed from or to the engine. 3.I1f some error has occured while
executing the request on the engine. 4.If the response xml obtained from server cannot be
parsed

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, requestorUserInfo);

Assign System Privileges to the User

This Java APl is used to assign the System Privileges to the User. The user would require to provide its

identity i.e. user Info as well as of the user who is providing System Privileges.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/

AssignSystemPrivilegesToUser.java for sample code of this use case.

Steps:

1. Initialize Report Client.

2. Initialize Requestor UserInfo.

3. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

4. Createinstance of User for which System Privileges are to be set.
String userId="FinanceUser";
String organization=="MyOrg";

UserInfo userInfo = sMgr.getUserById(userId, organization,
requestorUserInfo);

5. Assign System Privileges to assigneeUser.

Method : setSystemPrivileges

112

public void setSystemPrivileges(java.lang.String systemPrivileges)

Enums.SecurityTypes.SystemPrivileges. CATEGORY_SETUP
Enums.SecurityTypes.SystemPrivileges. DATA_ADMIN
Enums.SecurityTypes.SystemPrivileges./M_SUPPORT
Enums.SecurityTypes.SystemPrivileges.systemPrevilegesMap
Enums.SecurityTypes.SystemPrivileges. SCHEDULER
Enums.SecurityTypes.SystemPrivileges. REPORT_DESIGNER
Enums.SecurityTypes.SystemPrivileges. DEPLOYREPORTBUNDLE
Enums.SecurityTypes.SystemPrivileges. CATEGORY_SETUP_GLOBAL
Enums.SecurityTypes.SystemPrivileges. SCHEDULER_GLOBAL
Enums.SecurityTypes.SystemPrivileges. DATA_ADMIN_GLOBAL
Enums.SecurityTypes.SystemPrivileges. ADHOCREPORTDESIGNER
Enums.SecurityTypes.SystemPrivileges. WIDGET_DESIGNER

Enums.SecurityTypes.SystemPrivileges. GENERATE_LINKEnums.SecurityTypes.SystemPrivileges.
GENERATE_LINK_GLOBAL

This method sets System Privileges in the comma-separated format.

userInfo.setSystemPrivileges (new
com.intellica.client.utils.Utility().getRightsFromMaskedValue (
com.intellica.client.common.Enums.SecurityTypes.SystemPrivileges.CATEGORY SE
TUP |
com.intellica.client.common.Enums.SecurityTypes.SystemPrivileges.SCHEDULER |
com.intellica.client.common.Enums.SecurityTypes.SystemPrivileges.SCHEDULER G
LOBAL |
com.intellica.client.common.Enums.SecurityTypes.SystemPrivileges.WIDGET DESI
GNER |
com.intellica.client.common.Enums.SecurityTypes.SystemPrivileges.REPORT DESI
GNER |
com.intellica.client.common.Enums.SecurityTypes.SystemPrivileges.ADHOCREPORT
DESIGNER |

Enums.SecurityTypes.SystemPrivileges.GENERATE LINK));

sMgr.modifyUser (userInfo, requestorUserInfo);

Assign Role To User

This Java APl is used to assign a specified existing role to the application user.

113

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/ AssignRoleToUser.java for

sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.
Initialize Requestor UserInfo.

Create a SecurityManager class object for getting the controller information for all Administration

related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of User for which System Privileges are to be set.
String userId ="Userl"; // Id of the application user

String orgId ="MyOrg";
UserInfo userInfo=sMgr.getUserById(userId, orgId ,requestorUserInfo);

Create instance of Rolelnfo that is to be assigned to the User.

String roleId ="Manager"; // Id of the role to be Assigned
RoleInfo roleInfo = sMgr.getRoleById(roleId, orgId ,requestorUserInfo);

Grant this Role Info to the assignee User.
Method: grantRoleToUser

public void grantRoleToUser(targetUInfo,rInfo, userInfo)throws

This method grants new role to User and keeps previous roles of that user in-tact.

Parameters:

e TargetUInfo: com.intellica.client.common.UserInfo class object to which roles has to be

assigned.
¢ RiInfo: com.intellica.client.security.Rolelnfo object to be granted.
e UserlInfo: The details of the requesting user.

sMgr.grantRoleToUser(userInfo, roleInfo, requestorUserInfo);

Assign Roles To User

This Java APl is used to assign multiple roles to the application user.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/ AssignRolesToUser.java for

sample code of this use case.

Steps:

1.
2.

Initialize Report Client.
Initialize Requestor UserInfo.

114

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();
Create instance of User for which System Privileges are to be set.
String userId="TestUser";// Id of the application user
String orgId="MyOrg";

UserInfo userInfo=sMgr.getUserById(userId, orgId ,requestorUserInfo);

Create instance of Rolelnfo that is to be assigned to the User.

String roleldl "Manager";//Id of the rolel to be Assigned

String roleld2 "Administrator";//Id of the role2 to be assigned

RoleInfo roleInfol = sMgr.getRoleById(roleIdl, orgId ,requestorUserInfo);
RoleInfo roleInfo2 = sMgr.getRoleById(roleId2, orgId ,requestorUserInfo);

Grant these Roles to the assignee User.
Method: assignRolesToUser

public void assignRolesToUser(targetUInfo, java.util.ArrayList rolelnfos,
userInfo) throws

This method attaches a User with more than one role.

Parameters:

e targetUInfo: The user to be attached with a role.
¢ rolelnfos: Array List of Roles to be attached with user.
e userlnfo: The details of the current user.

ArrayList roleInfoArr = new ArraylList();
roleInfoArr.add(roleInfol);//Add roleInfo object rolel to Array
roleInfoArr.add(roleInfo2);//Add roleInfo object “role2” to Array
sMgr.assignRolesToUser (userInfo, roleInfoArr, requestorUserInfo);

Revoke Role from User

This Java APl is to revoke specified role from user

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/ RevokeRoleFromUser.java

for sample code of this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor Userinfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

115

SecurityManager sMgr=SecurityManager.getInstance();

4. GetUser by User Id whose role is to be revoked.
String userId = "Userl"; // Id of the application User

String orgId= "MyOrg";
UserInfo userInfo=sMgr.getUserById(userId, orgId ,requestorUserInfo);

5. Create instance of Rolelnfo that is to be revoked for the given User.

String rolelId = "Manager"; // Id of the role to be Assigned
RoleInfo roleInfo=sMgr.getRoleById(roleId, orgId ,requestorUserInfo);

6. Revoke the Role from assignee User.
Method: revokeRoleFromUser
public void revokeRoleFromUser(UserInfo targetUInfo,
RoleInfo rInfo,

UserInfo userInfo)
throws ISecurityException

This method revokes or removes role assigned previously to the user.

Parameters:

e TargetUInfo: com.intellica.client.common.UserInfo class object to which role has to be
revoked.

e rInfo: com.intellica.client.security.Rolelnfo object to be revoked from the user.

e userlnfo: The details of the current User.

sMgr.revokeRoleFromUser (userInfo, roleInfo, requestorUserInfo);

User Mapping
This Java APl is used to map the host application user with Intellicus user in the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/UserMapping.java for sample

code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor Userinfo.

3. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();
4. GetUser by Userld to which, new user is to be mapped
String userId="Smith";// Id of the application user

116

String password="";
String orgId="MyOrg";
UserInfo userInfo = new UserInfo(userId, password , orgId);

Map the new User implementing mapAppldToUser method.

String newUserId="John";
sMgr.mapAppIdToUser(newUserId,userInfo, requestorUserInfo);

Details of Method: mapAppldToUser

public void mapAppIdToUser(java.lang.String appId,
UserInfo targetUInfo,
UserInfo userInfo)
throws ISecurityException

This method adds a mapping between an Appld and the user.

Parameters:

e Appld: is the application Id.
e TargetUlInfo: is the targeted User.
e Userlnfo: the current user details.

Delete User

This Java APl is used to delete an existing user with given userld from the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Management/ DeleteUser.java for sample

code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userlnfo.

Create a SecurityManager class object for getting the controller information for all Administration

related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Get UserInfo instance of the user that is to be deleted.

String userId="FinanaceUser";
String orgId="FinanceOrg";//0rganization Id in which user
exists.
UserInfo targetUserInfo=sMgr.getUserById(userId,orgld,
requestorUserInfo);

Delete the User.

Method: deleteUser

117

Role

public void deleteUser(UserInfo targetUInfo,
UserInfo userInfo)
throws ISecurityException

This method deletes an existing User's Info at the Report Engine.

Parameters:

e TargetUInfo: The Userinfo object of the user to be deleted.
e Userlnfo: The details of the current user.

sMgr.deleteUser(targetUserInfo, requestorUserInfo);

Get Role List

This Java APl is used to get the list of all Roles present in Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Role Management/ GetRoleList.java for sample

code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.
Initialize Requestor UserInfo.

Create a SecurityManager class object for getting the controller information for all Administration

related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Get the role list.
Method: getRoleList

public java.util.ArraylList getRoleList(UserInfo userInfo)
throws ISecurityException

This method returns the list of all roles created in Intellicus repository.
Returns:
ArrayList of roleInfo Bean class Rolelnfo

roleList=sMgr.getRoleList (requestorUserInfo);

Create Role (Add Role)

This Java APl is used to add a new role in the existing Organization.

118

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Role Management/ AddRole.java for sample

code of this use case.

Steps:

1. Initialize Report Client.

2. Initialize Requestor UserlInfo.

3. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

4. Create instance of Rolelnfo for the role to be added in the Organization.
String roleName = “MANAGER”;

String orgIld = “0Orgl”;
RoleInfo newRole = new RoleInfo(roleName, orgld);

5. Add therole in the organization.
Method : addRole

public void addRole(RoleInfo roleInfo, UserInfo userInfo) throws
ISecurityException

This method adds a new Role at the Report Engine.

Parameters:

e roleInfo: The details of new Role.
e userInfo: The current user.

sMgr.addRole(newRole, requestoruserInfo);

Assign Category Privileges To Role
This Java APl is used to assign the Access privileges of a Category to the existing Role.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Role Management/

AssignCategoryPrivilegesToRole.java for sample code of this use case.

Steps:

1. |Initialize Report Client.
Initialize Requestor Userlnfo.

3. Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

119

Create EntityInfo and ApplInfo

//RoleID of the Role for which AccessRights are to be assigned

String roleld="Manager";//role Id to be checked whether exists or not in the
Intellicus server

String orgld ="hostOrg";

String categoryId ="B2996F87-FE41-8D19-6C67-B3C22803DD99";

EntityInfo entityInfo=new EntityInfo(categoryId,"CATEGORY");

AppInfo appInfo = new AppInfo(roleId,orgId,"ROLE");

Create EntityAccessRight Object and set this ApplInfo and EntityInfo in its object.

EntityAccessRight ear=new EntityAccessRight();
/*public void setAppInfo(AppInfo appInfo)Parameters:
*appInfo - : AppInfo object.

* */
ear.setAppInfo(appInfo);
75 access level can have three values possible.
Deny Access = 0
Full Access =1
& Partial Access =2
* None Access = 3%/
/**

* public void setAccesslLevel(int accesslLevel)

* @param accesslLevel : access level can be 0/1/2

*/

ear.setAccesslLevel (Enums.SecurityTypes.AccesslLevel.FULLACCESS);

Assign Category Privileges to assigneeUser using assignCategoryPrivilegesToUser.
Method: grantEntityPrivileges

Syntax

public void grantEntityPrivileges(EntityInfo entity,
EntityAccessRight entityAccessRight, UserInfo userInfo)

API allows the user to assign access rights information to a user/role/organization or Everyone on
an entity.

Parameters:

e entity: The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class.

e entityAccessRight: The entityAccessRight object. This object should contain the AppInfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

o userlnfo: Details of current user who is providing access rights.

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, adminUserInfo);

120

Assign Report Privileges to Role

This Java APl is used to assign the Access privileges for a Report to the Role.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Role Management/

AssignReportPrivilegesToRole.java for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userinfo.

Create a SecurityManager class object for getting the controller information for all Administration

related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create Entitylnfo and ApplInfo

//RoleID of the Role for which AccessRights are to be assigned
String roleId="Manager";

String organisationId="Intellica";

String reportId="638CB7A6-F504-0ECD-008F-10B25253DCA8";
EntityInfo entityInfo=new EntityInfo(reportId,"REPORT");
AppInfo appInfo = new AppInfo(roleld,organisationId, "ROLE");

Create EntityAccessRight Object and set this ApplInfo and EntityInfo in its object.

EntityAccessRight ear=new EntityAccessRight();
/*public void setAppInfo(AppInfo appInfo)Parameters:

*appInfo - : AppInfo object.
* */
ear.setAppInfo(appInfo);
7% access level can have three values possible.
Deny Access =0
Full Access =1
& Partial Access = 2
* None Access = 3%/
/**

* public void setAccesslLevel(int accesslLevel)

* @param accessLevel : access level can be 0/1/2

*/

ear.setAccesslLevel (Enums.SecurityTypes.AccesslLevel.FULLACCESS);

Assign Category Privileges to assigneeUser using assignCategoryPrivilegesToUser.

Method: grantEntityPrivileges

Syntax

public void grantEntityPrivileges(EntityInfo entity,
EntityAccessRight entityAccessRight, UserInfo userInfo)

121

API allows the user to assign access rights information to a user/role/organization or Everyone on

an entity.

Parameters:

e entity: The entity object.This object must be created by setting entityld and entityType.
entityTypes supported are defined in EntityTypeNames class.

e entityAccessRight: The entityAccessRight object. This object should contain the AppInfo
object with the credentials of the user to which grants are to be assigned and access level
as defined in Enums.SecurityTypes.AccessLevel

o userlnfo: Details of current user who is providing access rights.

Example
Given below is the example of actual implementation of this method:

sMgr.grantEntityPrivileges(entityInfo, ear, adminUserInfo);

Delete Role

This Java APl is used to delete a particular Role of an existing Organization in Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Role Management/ DeleteRole.java for sample

code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.

Initialize Requestor UserInfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations.

SecurityManager sMgr=SecurityManager.getInstance();

Create instance of Rolelnfo for the role which is to be deleted from the Organization.

//Role ID i.e. to be deleted

String roleId="Manager";// Id of the role to be deleted
//0rganization from which the given role is to be deleted.
String orgId ="Test";

RoleInfo roleInfo=new RoleInfo(roleld,orgId);

Assign the Report Privileges to the Role for given Report Id in a particular Category.
Method: deleteRole

public void deleteRole(RoleInfo roleInfo, UserInfo userInfo) throws
ISecurityException

This method deletes a Role at the Report Engine.
Parameters:

122

e Rolelnfo: The role to be deleted.
e userlnfo: The current user details.

sMgr.deleteRole(roleInfo, requestorUserInfo);

Report Management Actions

Categories

Import

import
import
import
import

com.intellica.client.common.UserInfo;
com.intellica.client.layout.LayoutManager;
com.intellica.client.reportutils.Category;
com.intellica.client.exception.

LayoutHandlerException;

import
import

java.util.Vector;
java.util.HashMap;

Get Category List

This Java APl retrieves the list of all categories from the Intellicus repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Category Management/ GetCategoryList.java for

sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.
Initialize Requestor Userinfo.
Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

Get the list of all Categories in Repository.
Method: getCategoryList

public java.util.Vector getCategoryList(UserInfo requestorUserInfo)
throws LayoutHandlerException

This method returns a vector of Category objects. The method requests report server and returns
the report categories present in the report repository, both public and private to requestor user.
The public categories will be restricted to those categories that the requestorUserinfo has access to

read. Each category object provides getlsPublic boolean method to identify the scope of category.

Parameters:

123

e RequestorUserinfo: Userinfo for authorization. Pass getEmptylnstance() in case of report
server runs in Security-Off mode.

Returns:
Vector of Category objects.

Vector vecCatList= new Vector();
vecCatList=1m.getCategoryList(requestorUserInfo);

The other three APIs for getting Category List are-

1. Returns avector of categories from the report server on the basis of filters

public Vector getCategoryList(Filter filter,UserInfo userInfo)

2. Returns avector of report categories from the report server with given access rights

public Vector getCategoryList(int accessRight, UserInfo userInfo)

3. Returns avector of categories from the report server on the basis of filters

public Vector getCategorylList(com.impetus.intera.layout.adhoc.data.Filters
filters,UserInfo userInfo)

All these returns Vector containing Category objects.

Add a new Category
This Java APl is used to add a new Category in the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Category Management/ CreateNewCategory.java

for sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor Userlnfo.
3. Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

4, Create aninstance of Category i.e to be added in Repository and set its various attributes of
Categories.

String catName="NewDemoCategory";

String catDescription = “This is the new category just created”;
String catld = “123456";

Category newCategory=new Category(catName);

//Set the various properties of the Category
newCategory.setIsPublic(true);

newCategory.setIsHidden(false);

124

newCategory.setDescription(catDescription);
//To set the category id
newCategory.setCategoryId(catld);
newCategory.setMenuName(catName) ;

5. Add this Category in the Repository.
Method: addCategory
public Category addCategory(Category category,

UserInfo userInfo)
throws LayoutHandlerException

This method adds new category to the Intellicus repository.

//Adds new category to the Intellicus repository.
lm.addCategory(newCategory, requestorUserInfo);

Delete Category

This Java APl is used to delete an Existing Category from the Intellicus repository along with the Reports

present in that Category.User need to provide the Category ID of the Category which is to be deleted.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Category Management/ DeleteCategory.java for

sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor Userinfo.
3. Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

4. Delete the Category with given Category Id.

This method is used to delete the existing category from the report engine's report layout

repository along with the reports contained in it.

Method: deleteCategory

public void deleteCategory(java.lang.String catId, boolean unConditional,
UserInfo userInfo)
throws LayoutHandlerException

Parameters:

e CatId: Category ID of the Existing Category that is to be deleted.

125

e UnConditional: If true than deletes the category even if report layouts are present in the

category along with all its reports.
e UserInfo: Userinfo object authorization.

//Category ID of the Category that is to be deleted.
String categoryID="DemoCategory";
lm.deleteCategory(categoryID, true, requestorUserInfo);

GetSubCategories

This Java APl is used to delete an Existing Category from the Intellicus repository along with the Reports

present in that Category.User need to provide the Category ID of the Category which is to be deleted.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Category Management/DeleteCategory.java for

sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.
Initialize Requestor UserInfo.
Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

Get the sub categories for given Category Id.

This method is used to delete the existing category from the report engine's report layout

repository along with the reports contained in it.
Method: getSubCategories

public LinkedHashMap getSubCategories() throws LayoutHandlerException

Parameters:

e CatId: Category ID of the Category whose categories are to be obtained
e UserlInfo: UserInfo object authorization.

//Category ID of the Category that is to be deleted.

String categoryID="DemoCategory";

categoryObj = lm.getCategory(categoryID, requestorUserInfo);

//now, fill the sub-categories in the category object.

Filter filter = new Filter();

filter.setFilterField("ENTITYTYPE", "CATEGORY");
Im.populateEntityListForCategory(categoryObj, filter, requestorUserInfo);
LinkedHashMap subcategories = categoryObj.getSubCategories();

The other related APIs for Category Management are-

1.
2.

Public void deleteSubCategory(String subCategoryld)
public void setSubCategories(LinkedHashMap subCategories)

126

3.
4.

public Category getParentCategory()
public void setParentCategory(Category parentCategory)

Report Operations

Import

import
import
import
import

import
import

com.intellica.client.common.UserInfo;

com.intellica.client.layout.LayoutManager;

com.intellica.client.reportutils.Report;

com.intellica.client.exception.
LayoutHandlerException;

java.util.Vector;

java.util.HashMap;

Run Report

This Java APl is used to execute a Report with given Report Id.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Operations/ RunReport.java for sample

code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor UserInfo.
Create an instance of reportExecuter i.e. a class having methods for executing a report.

ReportExecutor report = new ReportExecutor();

Set the System Parameters required for running the Report.

//Instantiate a collection object for setting system parameters
HashContainer hcSysParams = new HashContainer();

//fill up the system parameter values

//Report ID which is required to run

String reportId = "Customer Report";

// This will set Id of the report.
hcSysParams.put ("REPORT ID", reportId);

// In database mode only reportId needed.don't prefix //category id

// This will set the output format for the report.report //format can be
PDF/XLS/HTML

hcSysParams.put ("REPORT FORMAT",InteraConstants.ReportFormats.PDF);

Set the User/Business Parameters

//Instantiate a collection object for setting user/business //parameters
HashContainer hcUserParams =new HashContainer();

127

String countryName = “Australia”;

String roleId = “3818”;

// fill up the user params if report contains any parameter
hcUserParams.put("Country", countryName);

// Parameter Name as created in the report layout(IRL)
hcUserParams.put("Role ID", roleld);

6. Instantiate the Byte Array Output Stream object.

ByteArrayOutputStream reportData = new ByteArrayOutputStream();

7. Runthe Report.
Method: runReport

public void runReport(UserInfo userInfo,
HashContainer systemParameterHash,
HashContainer userParameterHash,
IStreamCallback pCallback,
java.io.ByteArrayQutputStream reportData,
boolean isPublic)
throws ClientException

This method executes a report by taking the values of system-defined parameters (and report
parameters) in parameters as HashContainer and gives the generated report data in the passed
outputStream. This method generates the complete report, and then returns the control to the
calling code. In this case, the calling code must catch the exceptions right at the calling place. The

calling code can use the output stream after the method call.

Parameters:

e Userlnfo: userinfo object will be used for passing user information to the Report Engine.
Can be left as null when application is not using Intellica Security Module.

e SystemParameterHash: HashContainer instance, Contains the values of system
parameters.

e UserParameterHash: HashContainer instance, Contains the values of Report parameters.
Can be left as null when there are no parameters in the report.

e PCallback: IStreamCallback instance, For future usage.

e ReportData: The RefByteArrayOutputStream instance required for the report output.The
report output in the form of byte array is added in this output stream.

report.runReport(requestorUserInfo,hcSysParams,hcUserParams,null, reportData,
true);

Get the list of Published Reports of a particular report
This Java APl is used to get the list of all published reports corresponding to given Report Id.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Operations/ GetPublishedReport.java for
sample code of this use case.

128

Steps:

N

Initialize Report Client.
Initialize Requestor UserInfo.
Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

Set the filter for getting Saved Report List.

The various filter settings could be:
Enums.Filters.SavedReportList.CATID
Enums.Filters.SavedReportList.ENTITY_PROPERTIES
Enums.Filters.SavedReportList. FROMDATE
Enums.Filters.SavedReportList. GENERATOR_ID
Enums.Filters.SavedReportList. GENERATOR_TYPE
Enums.Filters.SavedReportList.ISPUBLIC
Enums.Filters.SavedReportList.ORGID
Enums.Filters.SavedReportList. ORPHANED
Enums.Filters.SavedReportList. PUBLISHSTATUS
Enums.Filters.SavedReportList. REPORTID
Enums.Filters.SavedReportList. WORKFLOW_STATE
Enums.Filters.SavedReportList. TODATE
Enums.Filters.SavedReportList.USERID

Filter filterObj = new Filter();

String reportId="SalesReport";
filterObj.setFilterField(Enums.Filters.SavedReportList.REPORTID, reportId);

Get the List of Saved Reports based on the filters applied.
Method: getViewSavedReport
public void getViewSavedReport(SavedReport savedReport,

java.io.ByteArrayOutputStream reportData, HashContainer sysParams, userInfo)
throws LayoutHandlerException

This method is used to get the saved report with in the ByteArrayOutputStream passed as a

parameter.

Parameters:

129

e SavedReport: Saved report object SavedReport.

e ReportData: ByteArrayOutputStream contains the Report data.

e SysParams: HashContainer for report system parameters.
e UserInfo: UserInfo For authorization.

Vector vecPublishedReportList =
1m.getSavedReportList(filter0Obj, requestorUserInfo);

Report Layout Management

Import

import com.intellica.
import com.intellica.
import com.intellica.
import com.intellica.

client.common.UserInfo;
client.layout.LayoutManager;
client.reportutils.Report;
client.exception.

LayoutHandlerException;
import java.util.Vector;
import java.util.HashMap;

GetAllReportList

This Java APl is used to get the complete list of all the Reports from the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout Management/

GetAllReportList.java for sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor Userlnfo.

3. Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

4. Getthe Report List

Method : getReportList

public java.util.Vector getReportList(UserInfo userInfo) throws

LayoutHandlerException

Returns a vector of all report names from the report server The list will be restricted to accessible

reports by this user (Applies to report server enterprise edition only)

Parameters:

e Userlnfo: Userinfo for authorization.

Returns:

130

Vector of all report names from the report server.

Part of Sample Code implementing “getReportList”:
//Vector that will be used to store the Report List
Vector vecReportList= new Vector();
//This method returns a vector of all report names from the report
server
vecReportList=1lm.getReportList(requestorUserInfo);

The other APIs for getting Report List are-
1. Returns a vector of report objects from the report server on the basis of requesting filters.

public Vector getReportList(Filter,UserInfo)

2. Returns avector of all report names from the report server. The list will be restricted to accessible
reports by this user

public Vector getReportList(int categoryAccessRight, int
reportAccessRight,UserInfo userInfo)

3. Returns avector of all report names from the report server. The list will be restricted to accessible
reports by this user

public Vector getReportList(int reportAccessRight,UserInfo userInfo)

4. This method gets the list of reports based on filters (request details) specified in ReportListRequest

public Vector getReportList(ReportListRequest reportListRequest,UserInfo
userInfo)

MoveReport
This Java APl is used to move an existing report to another Destination Category.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout Management/ MoveReport.java

for sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor UserInfo.
3. Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

4. Pass the Source Reportld which is to be copied and the destination category Id , to which it is
copied so as to move the Report.

Method : moveReport

131

public void moveReport(java.lang.String sourceReportId,
java.lang.String destinationCategoryId,

Report report, UserInfo userInfo) throws
LayoutHandlerException

Method to Move a report to the new category.

Parameters:

e SourceReportld: source report id, mandatory argument for moving the report.

e DestinationCategoryld: destination category id,where new report has to be moved.if this is
null then report objects's category id will be taken as destination category.

e Report: instance of Report class for move.

e UserInfo: UserInfo object for authorization.

//ReportID of the Report that is to be moved to new Category

String reportID="234CB(C33-EC19-E754-7490-43DA2A24728C" ;

//CategoryID of the Destination Category where the report needs to be
moved

String destCategoryID="61FCA109-7EOD-DO23-A19C-AO54A38FC9B6";

//Method to copy the report to anther Category

1m.moveReport(reportID, destCategoryID, r,requestorUserInfo);

Get Report List For Category

This Java APl is used to get the complete list of Reports in given Category.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout Management/

GetReportListForCategory.java for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userinfo.
Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

Pass the Category Id whose Reports are to be listed.
Method : getReportListForCategory

public java.util.Vector getReportListForCategory
(java.lang.String categoryId,
UserInfo requestorUserInfo)

throws LayoutHandlerException

Method returns a vector of Report objects. The method requests report server and returns the
reports present in the report repository under given report category, both public and private to

requestor user. The public reports will be restricted to those reports that the requestorUserinfo has

132

access to read. Each report object provides getlsPublic boolean method to identify the scope of

report.

Parameters:

e Categoryld: The category Id of the category from which, the report layout list is requested.
Intellicus allows category ids upto 256 charecters long.

e RequestorUserInfo: UserInfo for authorization. Pass getEmptylnstance() in case of report
server runs in Security-Off mode.

Returns:

Vector of Reports.

Vector vecCatList= new Vector();

String categoryld = “01-Sales”;

vecCatList=1lm.getReportListForCategory
(categoryId , requestorUserInfo);

The other related APIs for getting Report List For Category are-

1.

Returns a vector of all report names from the report server.The list will be restricted to accessible
reports by this user.

public Vector getReportListForCategoryAccessRight(int
categoryAccessRight,UserInfo userInfo)

Returns a vector of all report names from the report server.The list will be restricted to accessible
reports by this user.

e (@param categoryld: The category Id for which the report layout list is requested.

e @param reportAccessRight masked value of the access right.

public Vector getReportListForCategoryWithAccessRights(String categoryld,int
categoryAccessRight, int reportAccessRight, UserInfo userInfo)

Returns a vector of all report names from the report server.The list will be restricted to accessible
reports by this user.

e @param categoryld: The category Id for which the report layout list is requested.

e @param categoryAccessRight masked value of the access right.

public Vector getReportListForCategoryWithCategoryRight(String
categoryId,int categoryAccessRight,UserInfo userInfo)

The method requests report server and returns the reports present in the report repository under
given report category, both public and private to requestor user.

public Vector getReportListForCategoryWithReportRight(String categoryId, int
reportAccessRight,UserInfo userInfo)

133

Get Saved Report List

This Java APl is used to get the list of Saved Reports in a particular Category/Report.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout

Management/GetSavedReportList.java for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor UserInfo.
Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

Pass the Category Id/Report Id whose Saved Reports are to be listed.
Method : getSavedReportList

public java.util.Vector getSavedReportList
(Filter filter, UserInfo requestorUserInfo)
throws LayoutHandlerException

Method returns a vector of Report objects. The method requests report server and returns the
saved reports present in the report repository under given report category/Report, both public and

private to requestor user.

Parameters:

o filter: Filter can set the values of CATID and REPORTID.
e RequestorUserinfo: UserInfo for authorization.

Returns:
Vector of Saved Reports.

//Cat ID of the Category whose Reports are required to be Listed

String catId = "4F9245A7-D639-4F99-604D-F32641B77725"; //category id to be

set in filter

String reportId="All Country Sales - Linked Prompt";//Report Id to be set in

filter

Filter filter = new Filter();
filter.setFilterField(com.intellica.client.common.Enums.Filters.SavedR

eportList.CATID, catId);
filter.setFilterField(com.intellica.client.common.Enums.Filters.SavedR

eportList.REPORTID, reportId);

134

file:///C:/Users/payal.khandelwal/AppData/Roaming/Microsoft/Word/Intellicus/MohanSir's%20Training%20Data/REClientAPI/com/intellica/client/exception/LayoutHandlerException.html

The other related APIs fro Saved Reports are:

public LinkedHashMap getSavedReportsMap()

public void setSavedReportsMap(LinkedHashMap savedReportsMap)

public void deleteSavedReport(String reportOld,String reportOutputld,
UserInfo userinfo)

public void updateSavedReport(SavedReport savedReport, Userinfo userinfo)
public void addSavedReport(SavedReport savedReport)

AN A

Add Report Layout to Category

This Java APl is used to add a report to an existing Category in the Intellicus repository. This would require

User to provide the Category ID, and the details related to the Reporti.e. to be added.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout Management/
AddReportLayoutToCategory.java for sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor UserInfo.
3. Create a Layout Manager class object for report layout management related operations.

4. Create an instance of Report i.e. to be added in the Category. Also, set the various attributes of
report.

135

throw new IOException("Could not completely read the file ");
}

is.close();

String reportName = "Sample Report";
String reportID = "Sample Report";

Report reportToAdd = new Report(reportName, reportID, bytes);

String categoryID = "Demo";
reportToAdd.setCategoryId(categoryID);

Upload the Report.
Method : uploadReport

public void uploadReport(Report report,
UserInfo userInfo)
throws LayoutHandlerException

This method uploads a report by taking the Report object as parameter. This method internally
validates the Report object for report paramaters.

The method also varifies if report already exists in the specified category.In case report object is not
validated and varified the method throws LayoutHandlerException exception.The calling code

must catch the exception right at the calling place.

Parameters:

e Report: Report class instance containing the report layout metadata and the byte array of
report layout itself.
e UserInfo: UserInfo object use to validate the user against the application.

Im.uploadReport(reportToAdd, requestorUserinfo);

Copy Report

This Java APl is used to copy an existing report to another destination category.

User needs to provide the ReportID that is to be copied and the destination category ID where it is to be

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout Management/ CopyReport.java

for sample code of this use case.

Initialize Report Client.
Initialize Requestor UserlInfo.
Create a Layout Manager class object for report layout management related operations.

136

file:///C:/Users/payal.khandelwal/AppData/Roaming/Microsoft/Word/Intellicus/MohanSir's%20Training%20Data/REClientAPI/com/intellica/client/reportutils/Report.html

LayoutManager lm= new LayoutManager();

Set the attributes for copied report.

Report r=new Report();
String rep Name = “Copied Report”;
r.setMenuName (rep_Name) ;

Pass the Source Report Id to be copied and the destination Category where it is to be copied.

Method : copyReport

public void copyReport(java.lang.String sourceReportId,
java.lang.String destinationCategoryId,
Report report,
UserInfo userInfo)
throws LayoutHandlerException

This method is used to make a copy of the existing report attributes.

Parameters:

e SourceReportld: source report id, mandatory argument for copying the report.

e DestinationCategoryld: destination category id, where new report has to be copied.if this is
null then source report's category id will be taken as destination category.

e Report: instance of Report class for copy.

e Userlnfo: Userinfo object for authorization.

Part of Sample Code implementing “copyReport”:

String sourceReportId "787F11B1-74E7-6792-9ACB-408753C0470F";
String destCategoryId "61FCA109-7EGD-DO23-A19C-AO54A38FC9B6" ;
1m. copyReport(sourceReportId, destCategoryId, r, requestorUserInfo);

Get Report Details

This Java APl is used to get Report Details corresponding to the given Reoprt Id from the Intellicus

Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Report Layout Management/

GetReportDetails.java for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userlnfo.
Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

137

4. Getthe Report Detail for given Report Id.
Method: getReportDetails

public Report getReportDetails(java.lang.String reportId,
UserInfo userInfo)
throws LayoutHandlerException

This method returns an object of Report class obtained from the report server.

Parameters:

e Reported: The report id whoes details should be obtained.
e UserlInfo: Userinfo for authorization.

Returns:
An object of Report class obtained from the report server.

Report reportDetail=new Report();
String reportId = "91FEE269-3AEE-C23D-6F04-7A9979BEBE09" ;
reportDetail=1lm.getReportDetails(reportId, requestorUserInfo);

Other related APIs for Report Layout Management are:

public LinkedHashMap getReportsMap()

public void setReportsMap(LinkedHashMap reportsMap)

public void updateReport(Report oldReport,Report newReport,Userinfo userinfo)
public void updateReport(Vector reportVector, Userinfo userinfo)

public void addReport(Report report)

AR o

Mass Operations

User is allowed to select more than one entity and perform the selected operation on those Entities. This

could be done using below APlIs.

Import

import com.intellica.client.common.UserInfo;

import com.intellica.client.layout.LayoutManager;

import com.intellica.client.reportutils.Report;

import com.intellica.client.exception.
LayoutHandlerException;

import java.util.Vector;

import java.util.ArraylList;

import java.util.HashMap;

138

file:///C:/Users/payal.khandelwal/AppData/Roaming/Microsoft/Word/Intellicus/MohanSir's%20Training%20Data/REClientAPI/com/intellica/client/common/UserInfo.html

Copy Entities

This APl is used to copy entities to another location. It returns modified object with new destination

location.
Let’s consider here, Queries are to be copied from one Category to Destination Category.

User needs to provide the Query IDs that are to be copied and the destination category ID where they are to

be copied.

Steps:

1. Initialize Report Client.
Initialize Requestor Userlnfo.
3. Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

4. Setthe Query Ids that are to be copied.

String querylIds[] = new String"12607729345009203129192910671882",
"12603516809689203129192914431493", "12587032332324192168102289583904" };

5. Create the EntityOperation object and set Query Entities for above given Query Ids and add in an
ArrayListi.e. entityList.

ArraylList entitylList = new ArraylList();
EntityOperation entityObj = null;

for(int i=0;i< queryIds.length;i++)

{
entityObj = new EntityOperation();
//Entity Type could be REPORT /CATEGORY /QUERY /DASHBOARD2/
PARAMETER /SAVEDREPORT /DASHBOARD WIDGET /CUBEOBJECT
entityObj.setEntityType("QUERY");
entityObj.setEntityId(queryIds[i]);
entitylist.add(entityObj);

6. Passthe arraylist of entities that are to be copied in the destination Category.
Method: copyEntities
public ArrayList copyEntities(ArrayList entitylList, String targetCatld,

UserInfo userInfo)
throws LayoutHandlerException{

This method is used to copy entites in the destination Category.

Parameters:

139

e entityList: ArrayList of {@link com.intellica.client.common.EntityOperation} class
instance.

e targetCatld: Destination location where this entity should be copied.

e UserlInfo: Userinfo object for authorization.

Part of Sample Code implementing “copyEntities”:

String destCategoryId = "DatalLoader";
Im.copyEntities(entitylList, destCategoryId, requestorUserInfo);

Delete Entities

This APl is used to delete entities from the Repository.

Let’s consider here, “Categories” are to be deleted from the Repository.
User needs to provide the Category IDs that are to be deleted.

Steps:

1. Initialize Report Client.
Initialize Requestor Userlnfo.
3. Create a Layout Manager class object for report layout management related operations.

LayoutManager lm= new LayoutManager();

4. Setthe Category Ids that are to be deleted.

String categoryIds[] = new String "Demo", "Sales Category"};

5. Create the EntityOperation object and set Category Entities for above given Category Ids and add in
an ArrayListi.e. entityList.

ArrayList entityList = new ArraylList();
EntityOperation entityObj = null;

for(int i=0;i< queryIds.length;i++)

{
entityObj = new EntityOperation();
//Entity Type could be REPORT /CATEGORY /QUERY /DASHBOARD2/
PARAMETER /SAVEDREPORT /DASHBOARD WIDGET /CUBEOBJECT
entityObj.setEntityType("CATEGORY") ;

entityObj.setEntityId(categoryIds [i]);
entitylist.add(entityObj);

6. Passthe arraylist of entities that are to be deleted from the Repository.

140

Method: deleteEntities

public ArrayList deleteEntities(ArrayList entitylList, UserInfo userInfo)
throws LayoutHandlerException

This method is used to delete entities.

Parameters:

e entityList: ArrayList of {@link com.intellica.client.common.EntityOperation} class instance.
e UserInfo: UserInfo object for authorization.

Part of Sample Code implementing “copyEntities”:

String destCategoryId = "DatalLoader";
Im. deleteEntities(entityList, requestorUserInfo);

Following are the APIs related to Mass Operation-

SANE I L A

public ArrayList deleteEntities(ArrayList entityList, UserIinfo userinfo)

public ArrayList copyEntities(ArrayList entityList, String destinationCatld, Userinfo userinfo)
public ArrayList copyLinkEntities(ArrayList entityList,String destinationCatld, UserInfo userinfo)
public ArrayList deLinkEntities(ArrayList entityList, UserIinfo userinfo)

public ArrayList moveEntities(ArrayList entityList, String destinationCatld, UserInfo userinfo)

Dashboards

Import

import
import
import
import
import

import
import

com.intellica.client.common.UserInfo;

com.intellica.client.dashboard.Dashboard;

com.intellica.client.dashboard.DashboardManager;

com.intellica.client.reportutils.Category;

com.intellica.client.exception.
LayoutHandlerException;

java.util.Vector;

java.util.HashMap;

Get Dashboard Details

This Java APl is used to get the complete detail about the Dashboard like its Category, Description, Access
Rights etc

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DashBoard Management/

GetDashboardDetails.java for sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.
Initialize Requestor Userinfo.
Create a Dashboard Manager class object for Dashboard related settings.

141

DashboardManager dManager = new DashboardManager();

4. Getthe Dashboard details whose Dashboard Id is given.
Method: getDashBoardDetails

public DashBoard getDashBoardDetails (String dashboardId, UserInfo userInfo)

This method is used to get the requested DashBoard Object whose ID is passed as an argument.

Parameters:

e param dashboardld: The unique identifier of the dashboard for which the details are to be
obtained from the Report Server.

e param userinfo: {@link com.intellica.client.common.Userinfo userinfo} object for
authorization to get DashBoard.

e Returns: Dashboard {@link com.intellica.client.dashboard.DashBoard2 DashBoard2}
object containing dashboard details

Dashboard dashboard = dManager.getDashBoardDetails(DashboardId,
requestorUserInfo);

Get Dashboard List

This Java APl is used to get the complete list of Dashboards from the Intellicus Repository for the Requestor

user

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DashBoard Management/ GetDashboardList.java

for sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor UserInfo.
3. Create a Dashboard Manager class object for Dashboard related settings.

DashboardManager dManager = new DashboardManager();

4. Getthe Dashboard list.
Method: getDashBoardList

public DashBoard getDashBoardList (Filter filterObj, UserInfo userInfo)

This method is used to get the list of Dashboards.

Parameters:

e param filterObj: Filter object to set EntityType, Categoryld, Depth.

142

e param userinfo: {@link com.intellica.client.common.UserInfo userinfo} object for
authorization to get DashBoard.
e Returns: Arraylist of Dashboards Objects

dashBoardList = dManager.getDashboardList(filterObj, requestorUserInfo);

Get Dashboard Widget List
This Java APl is used to get the complete list of the Dashboard widgets from the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DashBoard Management/
GetDashboardWidgetList.java for sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor UserInfo.
3. Create a Dashboard Manager class object for Dashboard related settings.

DashboardManager dManager = new DashboardManager();

4. Getthe Dashboard widget list whose Dashboard Id is given.
Method: getDashboardWidgetList

public ArrayList getDashboardWidgetList (Filter filterObj,
UserInfo userInfo)

Parameters:

e param filterObj: Filter object to set EntityType DASHBOARD_WIDGET

e param userinfo: {@link com.intellica.client.common.UserInfo userinfo} object for authorization to

get DashBoard.
e Returns: Arraylist of Dashboard Widgets

dashBoardWidgetList = dManager.getDashboardWidgetList(filterObj,
requestorUserInfo);

Get Dashboard Widgets for Category
This Java APl is used to get the widgets present in given Category from the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DashBoard Management/

GetDashboardWidgetsForCategory.java for sample code of this use case.

Steps:

1. |Initialize Report Client.
2. Initialize Requestor Userlnfo.
3. Create a Dashboard Manager class object for Dashboard related settings.

143

DashboardManager dManager = new DashboardManager();

Get the Dashboard widget list whose Dashboard Id is given.
Method: getDashboardWidgetList

public ArrayList getDashboardWidgetList (Filter filterObj,
UserInfo userInfo)

Parameters:

e param filterObj: Filter object to set EntityType DASHBOARD_WIDGET

e param userinfo: {@link com.intellica.client.common.UserlInfo userinfo} object for
authorization to get DashBoard.

e Returns: Arraylist of Dashboard Widgets.

//To get the Dashboard list
filterObj.setFilterField(Enums.Filters.EntityList.ENTITYTYPE,Enums.Filters.E
ntitylList.EntityType.DASHBOARD WIDGET);

//To get Widget list for given Category.
filterObj.setFilterField(Enums.Filters.EntityList.CATEGORYID, categoryld);

filterObj.setFilterField(Enums.Filters.EntityList.TRAVERSAL,Enums.Filters.En
tityList.Traversal.DOWN) ;

dashBoardWidgetList = dManager.getDashboardWidgetList(filterObj,
requestorUserInfo);

Delete Dashboard

This Java APl is used to delete the Dashboard from the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DashBoard Management/ DeleteDashBoard.java

for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userinfo.
Create a Dashboard Manager class object for Dashboard related settings.

DashboardManager dManager = new DashboardManager();

Delete the Dashboard whose Dashboard Id is given.
Method: getDashboardWidgetList

deleteDashboard (String dashBoardId, UserInfo userInfo)

This method is used to delete the dashboard specified by the dashboard ID passed as an argument.

Parameters:

144

e param dashBoardld: dashboard Id of the Dashboard i.e. to be deleted
e param userinfo: {@link com.intellica.client.common.UserInfo userinfo} object for
authorization to get DashBoard.

dManager.deleteDashboard(dashBoardId, requestorUserInfo);

Get Dashboard Preferences
This Java APl is used to get the list of the Dashboards set in its Preferences.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DashBoard
Management/GetDashboardPreferences.java for sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor UserInfo.
3. Create a Dashboard Manager class object for Dashboard related settings.

DashboardManager dManager = new DashboardManager();

4. Getthe Dashboard Preferences.
Method: getDashboardPreferences

Public ArrayList getDashboardPreferences(String dashBoardId, UserInfo
userInfo)

Getting Dashboard Preferences Object.

Parameters:

e param filterObj: Filter containing ONWER_APPID, OWNER_ORGID
e param userinfo: {@link com.intellica.client.common.UserInfo userlnfo} object for
authorization to get DashBoard.

dbPreferencesList = dManager.getDashBoardPreferences(filterObj,
requestorUserInfo);

Schedules

Scheduling of reports is very helpful for better utilization of server and printer resources. Reports that take

longer to run can be scheduled to save your time.

Report that needs processing of large volume of data and need server and printer resources for long time

can be scheduled to be generated over the weekend when load on servers would be relatively low. By

scheduling a report, it can be sent to multiple deliverables at a time, which is otherwise not possible.

145

Get the list of scheduled jobs

This Java APl is used to get the list of All Scheduled Jobs.

This program:

1.
2.

Returns list of report schedules for a selected report.
Report schedule list can be filtered for Reportld and Userld

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/ GetScheduleJobList.java for sample

code of this use case.

Steps:

1.

4,

Initialize Report Client.

Initialize Requestor Userinfo.

Create a Scheduler Manager class object. This is the controller class for all operations related to
scheduler. The class provides methods which acts as an interface for sending diffrent requests
related to Scheduler to report engine from the jsps.

SchedulerManager schdMgr = new SchedulerManager();

Set the filter values corresponding to respective fields for getting filtered list of Scheduled Jobs.

// Create a Filter class Object

Filter filterObj = new Filter();

// set filter for private schedule jobs
filterObj.setFilterField(Enums.Filters.ScheduledJob.ISPUBLIC, false);

// set filter for dedicated(Non-shared) schedule jobs
filterObj.setFilterField(Enums.Filters.ScheduledJob.ISSHARED, false);
//Set the ReportId filter for getting all report schedules for this Report
String reportIld = "93F21A40-01DD-DFFC-(C874-A7E30A27A127";
filterObj.setFilterField(Enums.Filters.ScheduledJob.REPORTID, reportId);
String userID= "HostUser";
filterObj.setFilterField(Enums.Filters.ScheduledJob.USERID,userID);

//Set the orgId filter for getting list of report schedules of a user of this
organization only

String orgld = "HostOrg";

filterObj.setFilterField (Enums.Filters.ScheduledJob.0ORGID,orgId);

5.

Get the Scheduled Job List based on filter applied.
Method: getScheduledJoblList

public java.util.ArraylList getScheduledJobList(Filter filterObj,
UserInfo userInfo) throws SchedulerException

This method returns the scheduleJobList in ArrayList containing HashMap as each element for each
row. The HashMap contains the details required for showing the list like the schedule job name,

schedule job id etc. as name value pair.

Parameters:

e Filter: May take below fields

146

ie.
Enums.Filters.ScheduledJob.ISPUBLIC
Enums.Filters.ScheduledJob.ISSHARED
Enums.Filters.ScheduledJob.REPORTID
Enums.Filters.ScheduledJob.ORGID
Enums.Filters.ScheduledJob.SCHEDULE
Enums.Filters.ScheduledJob.USERID

Enums.Filters.ScheduledJob.BATCHID

e UserInfo: The userinfo object for authorization.

// This will return array of Scheduled Jobs list from the Intellicus

Repository

ArrayList jobList = schdMgr.getScheduledJobList(filterObj,
requestorUserInfo);

Create a Schedule Job

This Java APl is used to create Scheduled Job that runs only once at a given time.

This program

1.
2.
3.

Refer to

Sets business parameters required to execute the report.
Creates a report delivery task.
Creates a ScheduleJob using 2).

<Intellicus_Install_Path>/SampleCodes/Java
APIs/Schedules/CreateDailyReportScheduleWithAllDeliveryOptions.java
<Intellicus_Install_Path>/SampleCodes/Java
APIs/Schedules/CreateDailyReportScheduleWithEmailDelivery.java
<Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/CreateMonthlyReportSchedule.java
<Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/CreateNewSchedule.java
<Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/CreateOnceReportSchedule.java
<Intellicus_Install_Path>/SampleCodes/Java APls/Schedules/CreateNewTask.java
<Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/DeleteScheduleJob.java
<Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/GetHistory.java
<Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/GetHistoryAndDetail.java

. <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/GetScheduleJoblList.java

. <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/GetTaskParameters.java

. <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/RunNowScheduleJob.java
. <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/RunOnceScheduleJob.java
. <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/ScheduleReportlist.java

for sample code of this use case.

147

Steps:

1. |Initialize Report Client.
Initialize Requestor Userinfo.

3. Create a SchedulerManager class object. This is the controller class for all operations related to
scheduler. The class provides methods acting as an interface for sending diffrent requests related
to Scheduler to report engine from the jsps.

SchedulerManager schdMgr = new SchedulerManager();

4. Create aninstance of Task and set its various properties.

Task task = new Task();

String batch Name = “Task Once”;
task.setBatchName(batch Name);

String rep Id = “93F21A40-01DD-DFFC-C874-A7E30A27A127";
task.setReportID(rep Id);
task.setReportFormat(InteraConstants.ReportFormats.PDF);
task.setIsPublic(false);

task.setIsShared(false);

5. Setthe Delivery Options for Task and related properties.

148

For E-mail

task.setDeliveryOperationType(com.intellica.client.common.Enums.Batch.DispatchOpera
tionTypes.EMAIL);

// get EmailProperty object for setting Email attributes

EMailProperty eMailProp = task.getEMailProperty();

String mail To = “HostUser@HostOrg.com”;
String mail Sub = “Mail Subject goes here”;
String mailMsg = “Dear User, Please find <%Report Name%> attached”;

eMailProp.setMailAttach(true);
eMailProp.setMailTO(mail To);

eMailProp.setMailSUB(mail Sub);
eMailProp.setMailMSG(mailMsg) ;

For FTP

Part of Sample Code implementing FTP Delivery Option:
task.setDeliveryOperationType(com.intellica.client.common.Enums.Batch.DispatchOpera
tionTypes.FTP);

String serverName = "ftp.intellicus.com";

String username = “upload”;

String password = “download”;

String folderName = “transferbin”;

String fileName = “MyFile”;

// get FTPProperty object for setting Email attributes
FTPProperty ftpProp = task.getFTPProperty();
ftpProp.setServerName(serverName) ;
ftpProp.setUserName(username) ;
ftpProp.setPassword(password) ;
ftpProp.setFolderName(folderName) ;
ftpProp.setFileName(fileName) ;

For Publish Report
Part of Sample Code implementing Publish Delivery Option:

task.setDeliveryOperationType(com.intellica.client.common.Enums.Batch.DispatchOpera
tionTypes.PUBLISH);

//get PublishProperty object for setting publish attributes for //the task
PublishProperty publishProp = task.getPublishProperty();

String fileName = “Shared Publishl”;
//setter method for saveFileName member variable.

publishProp.setSaveFileName(fileName) ;

//setter method for isPublic member variable.

149

publishProp.setIsPublic(true); //True : Set the Published
//Report as Public

//setter method for periodType member variable.
//Enums.Batch.PeriodType.ENDPERIOD : valid upto end of Day, Hour, //Month, Week,
Year.

//For ENDPERIOD, call setEndPeriod to set the value to Day, Hour, //Month, Week,
Year.

//Enums.Batch.PeriodType.EXPIRYDATE : valid upto a particular //date

//For EXPIRYDATE, call setPublishValidUptoFixedDate to set the //end Date.
//Enums .Batch.PeriodType.INTERVALPERIOD : valid upto fixed //interval

//For INTERVALPERIOD, call setIntervalValue and then set the //value for Interval
Period.

publishProp.setPeriodType(Enums.Batch.PeriodType.ENDPERIOD) ;

//setter method for endPeriod member variable when Period Type is //set to
ENDPERIOD

//1t sets the endPeriod value to either Hour/Day/Week/MonthYear.
publishProp.setEndPeriod(com.intellica.client.common.Enums.Batch.EndPeriod.YEAR);

For Print Report
Part of Sample Code implementing Publish Delivery Option:

task.setDeliveryOperationType(com.intellica.client.common.Enums.Batch.DispatchOpera
tionTypes.PRINT);

//This class holds PrintProperty for Task.

//All the variables are used for making a print request.
PrintProperty printProp = task.getPrintProperty();

int printCopies = 1;

String printerName = “Microsoft XPS Document Writer”;
//Number of copies to be printed
printProp.setPrintCopies(1);

//Printer name that is used for printing
printProp.setPrinterName(printerName) ;

//Set the number of pages to be printed
printProp.setPrintPageRange ("All");

6. Create Scdedule for the Scheduled Job and set its Frequency Type
Daily Freequency Type

To Set Frequency type as Daily
Enums.Schedule.FrequencyTypes.DAILY

Schedule schedule = new Schedule();
schedule.setFrequencyType (Enums.Schedule.FrequencyTypes.DAILY);

e Monthly Freequency Type

To Set Frequency type as Monthly

150

Enums.Schedule.FrequencyTypes.MONTHLY

Schedule schedule = new Schedule();

schedule.setFrequencyType(Enums.Schedule.FrequencyTypes.MONTHLY) ;

Weekly Freequency Type
To Set Frequency type as Weekly
Enums.Schedule.FrequencyTypes.WEEKLY

Schedule schedule = new Schedule();

schedule.setFrequencyType(Enums.Schedule.FrequencyTypes.WEEKLY) ;

Create Scheduled Job and associate created Task and Schedule to this Scheduled Job.

//create a SCHEDULEDJOB

ScheduleJob schdJob = new ScheduleJob(task,schedule);

Set Run Type for Scheduled Job
This is setter method for runType member variable.

public void setRunType(java.lang.String runType)

Enums.ScheduledJob.JobTypes.NOW
Enums.ScheduledJob.JobTypes. ONCE
Enums.ScheduledJob.JobTypes.RECUR
Parameters:

e RunType: Takes String value.
Part of Sample code for “NOW” as Run-type:

ScheduleJob schdJob = new ScheduleJob();
schdJob.setRunType(Enums.ScheduledJob.JobTypes.NOW) ;

Part of Sample code for “ONCE” as Run-type:

ScheduleJob schdJob = new Schedulelob();
schdJob.setRunType (Enums.ScheduledJob.JobTypes.ONCE) ;
schdJob.setOnceDate("10/03/2007") ;
schdJob.setOnceTime("10:52:10") ;

Part of Sample code for “RECUR” as Run-type:

ScheduleJob schdJob = new ScheduleJob();
schdJob.setRunType(Enums.ScheduledJob.JobTypes.RECUR) ;
schdJob.setFrequencyType(Enums.Schedule.FrequencyTypes.DAILY);
schdJob.setAfterDays(2);

151

Add the Scheduled Job in the Repository.
Method : addScheduleJob(schdJob,userinfo)

public void addScheduleJob(ScheduleJob scheduleJob, UserInfo userInfo)
throws SchedulerException

Adds ScheduleJob alongwith Schedule and Task depending on whether they are created Shared or
Dedicated in the Intellicus Repository.

Parameters:

e ScheduleJob: The ScheduleJob object.
e Userlnfo: The userinfo object for authorization.

schdMgr.addScheduleJob (schdJob, requestorUserInfo);

Delete Schedule Job

This Java APl is used to delete dedicated scheduledJob selected from the list.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/DeleteScheduleJob.java for sample

code of this use case.

Steps:

1. Initialize Report Client.

2. Initialize Requestor Userlnfo.

3. Create a SchedulerManager class object. This is the controller class for all operations related to
scheduler. The class provides methods which acts as an interface for sending diffrent requests
related to Scheduler to report engine from the jsps.

SchedulerManager schdMgr = new SchedulerManager();

4. Delete Scheduled Job with given scheduledJob Id.

Method : deleteScheduledJob

public void deleteScheduledJob(java.lang.String jobID,
UserInfo userInfo)
throws SchedulerException

This method deletes an existing ScheduledJob.

Parameters:

e JoblD: Takes a String value.
e UserlInfo: The userinfo object for authorization.

String schdJobId = "114016239210";
schdMgr.deleteScheduledJob(schdJobId, requestorUserInfo);

152

Get the input parameter names and their values set at the task creation time.

This Java APl is used to get the input Parameter names whose values are set at the Task Creation

time.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Schedules/GetTaskParameters.java for

sample code of this use case.

This program:

N

Steps:

N

Prepare a scheduler manager object

Get the task object for the specified task id

Get the hash map of input parameter from the task object

Get the input parameter names and their values set at the task creation time.

Initialize Report Client.

Initialize Requestor Userlnfo.

Create a SchedulerManager class object. This is the controller class for all operations related to
scheduler. The class provides methods acting as an interface for sending different requests related
to Scheduler to report engine from the jsps.

SchedulerManager schdMgr = new SchedulerManager();

Get the Task instance for given Task Id whose input parameters are to be obtained.

String taskId= "1169627272589";
Task taskObj = schdMgr.getTask(taskId, requestorUserInfo);

Get the Input Parameters for this Task.
Method: getinputParamMap

public java.util.HashMap getInputParamMap()

getter method for inputParamMap member variable.
Returns:
inputParamMap as HashMap.

HashMap inputParamMap = taskObj.getInputParamMap();

Cab Deployment

Upload and Deploy cab/irb file

This Java APl is used to upload and deploy cab/irb file both.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Cab Deployer/CabDeployer.java for sample code

of this use case.

153

Steps:

1. Initialize Report Client.

2. Initialize Requestor UserlInfo.

3. Setthe application path and cab/irb File path.
//path where the intellicus web client is deployed
String applicationPath = "C:/Program
Files/Intellicus/Jakarta/webapps/intellicus";
CabFile.setApplicationPath(applicationPath+ File.pathSeparator);
//actual path of irb file
String irbFilePath = "c:/ABC.irb";

4. Upload the Cab File.

CabFile cabFileObj = new CabFile(irbFilePath, requestorUserInfo);

5. Deploy the Cab File.
Method: deploy(java.lang.String cabPath, UserInfo userinfo)

public java.util.HashMap deploy(java.lang.String cabPath,
UserInfo userInfo)

This method takes the path of the cab file i.e. to be deployed and deploys it in the Intellicus
Repository.

Part of Sample Code implementing “deploy”:

cabFileObj.deploy(irbFilePath,irbFilePath+".log" , requestorUserInfo);

Report Object
Query Object

Query objects contain SQL query and list of the fields along with their attributes for using in Ad hoc reports

and sometimes in Standard reports.

These are designed from Intellicus web portal at Main Menu -> Repository-> Report Objects -> Query Objects

screen.
These objects are stored as XML in Intellicus repository.

The Intellicus web Ul provides option for Adding, Deleting and Editing Query Objects.

Almost all of the operations provided by the Intellicus web Ul are also available from the Java APIs.

This document intends to explain the Java APIs with Query Object manipulation purpose; there would be

sample code files associated with this document.

154

Attribute of Query Objects:

Below table lists all the attributes of query objects which can be modified through Java APIs.

Information Type Description

Name Mandatory Must be Unique

SQL Statement Mandatory The SQL Statement which sources data
for this QO.

Connection Name Optional If provided, then this Query object

becomes associated to the given

connection.
Column Details Optional These are the details of the fields.
As array list.
Column field Name Mandatory Must be returned by above SQL. Here it

) .) is used to match the field and
(if column details are given))))
associate below given caption and

width attributes to it.

Column data type Mandatory, Default - Field data type returned by
CHAR/NUMBER/DATE SQL.
Column Caption Optional, String Default - Field name returned by SQL

with spaces truncated and Case

converted to Title case.

Column Width Mandatory, Integer

Column Hidden Optional, Boolean Default - False

155

Information Type Description

Column Hyper Link Optional, String

Column Key Field Name Optional, String

Column Group Label Optional, String Adds this column to a group, Group
label must exist.

Column Alignment Optional Default- Left for Char and Date, Right
for Numeric

Add Report Object

This Java APl is used for creating a new Report Object.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ReportObjects/ AddReportObject.java for

sample code of this use case.

In this API, you would require to provide SQL query to create the Query Object.

You may also provide column details like column name, caption, data type, width, output format and

hyperlink.

Refer to attributes table for the list of attributes you can set during creation.

Steps

1. Initialize Report Client.
2. Initialize Requestor UserInfo.

3. Create query object by using the following method:

Method
Enums.IRO.TYPE.QUERY.QUERY
Enums.IRO.TYPE.QUERY.PARAMETER
Enums.IRO.TYPE.QUERY.nFormat
Enums.IRO.TYPE.QUERY.Format
Enums.IRO.TYPE.QUERY.nParameter
Enums.IRO.TYPE.QUERY.nQuery

Enums.IRO.TYPE.QUERY.nReportObjectType

156

public static ReportObject createReportObject
(Enums.IRO.TYPE.QUERY) of ReportObject class.

Set the SQL Query - SQL can be set by creating com.impetus.intera.layout.sqleditor.SQLEditor class
object and calling setSQL () method.

SQLEditor sqlEditor = qoObj.getSqlEditor();
sqlEditor.setSQL(sqlQuery,true);

Parameters:

sqlQuery: This is to specify the query string to be used for fetching data.

Set the columns- Columns can be set by passing ArrayList containing the QueryObjectColumn
object. (QueryObjectColumn contains column attributes column name, data type caption, and
width and others as mentioned in above table).

Public void setColumnDetails (java.util.ArrayList columnDetails)

Parameters:
ColumnbDetails: This is the array list of columns to be added in the query object.

Objects of QueryObjectColumn can be created by using the constructor of
com.impetus.intera.reportobjects.QueryObjectColumn in which user provides attributes like

column name, caption, width and datatype to the columns.

QueryObjectColumn(java.lang.String columnName,
java.lang.String caption,
java.lang.String width,
java.lang.String dataType)
String colName = “Product”;
String caption = “Product Name”;
QueryObjectColumn qocl = new QueryObjectColumn(colName, caption ,"","");

Optionally, You may set other attributes of this column also.

// To hide this column
gocl.setHidden(true);

String groupCaption = "Job";

//To set this column in a group
gocl.setGroupLabelCaption(groupCaption);

// To set hyperlink for this column.

String hyperLink = "http://www.google.com";
gocl.setHyperlink(hyperLink);

Set the connection name- setConnectionName method of

com.impetus.intera.reportobjects.QueryObject class can be used to set the name of the connection
used by Query Object

public void setConnectionName(java.lang.String connectionName)

Parameters:

157

e ConnectionName: The database connection Name to be used for query object.
Set if filter is mandatory-This method is used to set the isFilterMandatory.

public void setIsFilterMandatory(boolean isFilterMandatory)
of QueryObjects class.

Parameters:

e |[sFilterMandatory: Whether mandatory filters are applied or not.
Set the group caption.

public void setGroupCaption(boolean isGroupCaption)
of QueryObjects class.

8. Addthe query object. This can be done by calling addReportObject method of
ReportObjectManager.]

public void addReportObject(ReportObject reportObject,
UserInfo userInfo).

Parameters:

e ReportObject: Java object of Query object to be deleted.
e UserlInfo: Object of UserInfo class.

Part of Sample Code implementing “Add Report Object”

ReportObjectManager reportObjectManager = new ReportObjectManager();
String qoName = "TestQuery";

String queryId = “qoObjID”;

String connName = “ReportDB”;

go0bj .setName(goName) ;

goObj.setId(queryId);

goObj.setCached(true);

goObj.setConnectionType("Default");
goObj.setConnectionName(connName) ;

goObj.setSource("SQL");
reportObjectManager.addReportObject (qoObj, requestorUserInfo);

Add Query Object from CSV Source
This Java APl is used for creating a new Query Object from a CSV source file.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ReportObjects/ AddReportObject.java for

sample code of this use case.
In this API, you would require to provide SQL query to create the Query Object.

You may also provide column details like column name, caption, data type, width, output format and

hyperlink.

158

Refer to attributes table for the list of attributes you can set during creation.

Steps

1.

Initialize Report Client.
Initialize Requestor Userinfo.
Create CSV Source Object

//CSVSource object
CSVSource csvSource =new CSVSource();

Set path for the CSV Source

//Set path of file along with name under connection

//1if connection is created at "E:\csv" and CSV file is in
//"E:\csv\subfolder\test.csv"

//then setpath will be csvSource.setPath("subfolder/test.csv");
csvSource.setPath("test/deptdetails test.csv");

//Set separator if not a default separator i.e ','
csvSource.setSeparator("|");

Create query object with this CSV Source and set various attributes

QueryObject gqoObj=QueryObject.createQueryObject("QoName@l", csvSource,
"ConnectionFile", requestorUserInfo);

//To set the ID for Query Object manually

goObj.setId("QoIdO1l");

//Set Category ID in order to create query object in a specific category.
goObj.setCategoryId("Catl");

//To set caching true or false for the Query Object
qoObj.setCached(true);

//To set the description for the Query Object

goObj.setDescription("This is a Test Query .");

Save query Object in Repository

//Save Query Object
qo0Obj.save(Enums.QueryObject.Action.ADD, requestorUserInfo);

Get Query Object by Name

This Java APl is used to get a java object representing Query Object by its name.

The object can be used to fetch details and/or then to modify details and replace Query Object in the

repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ReportObjects/ GetReportObjectByName.java

for sample code of this use case.

Steps:

1.

Initialize Report Client.

159

2.

Initialize Requestor UserInfo.
Call getReportObjectByName method of com.impetus.intera.reportobjects.ReportObjectManager
by type casting returned object to com.impetus.intera.reportobjects.QueryObject
public ReportObject getReportObjectByName
(String reportObjectType,
String reportObjectName,
UserInfo userInfo)

Parameters

e Report Object Type: Pass Enums.IRO.TYPE.QUERY.
e Report Object Name: Name of the Query Object to be fetched.
e UserInfo: Credentials of user requesting this information.

For getting attributes of Query Object you need to type-cast the Report Object into Query Object.
QueryObject

qoObj=(QueryObject)reportObjectManager.getReportObjectByName(Enums.IRO.TYPE.
QUERY, goName, userInfo);

Call getColumnDetails method on the java object of query object returned. This method will return
array list of all the columns.

Method

public java.util.ArrayList getColumnDetails()

Returns:

Returns the array list of columnDetails.

Call getConnectionName method on the java object of query object returned. This method is used
to get the name of the connection used by Query Object

public java.lang.String getConnectionName ()

Returns:
Returns the name of the connection.
Call isFilterMandatory method on the java object of query object returned.

public boolean isFilterMandatory()

Returns:
Returns whether mandatory filters are applied or not.
Part of Sample Code implementing “get Report Object By Name”

ReportObjectManager reportObjectManager = new ReportObjectManager();
String qoName = "All Country Sales";

160

QueryObject
goObj=(QueryObject) reportObjectManager.getReportObjectByName(Enums.IRO0.TYPE.
QUERY, goName, requestorUserInfo);

Get Report Object List

This Java APl is used to retrieve the list of Report Objects from Intellicus repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ReportObjects/ GetReportObjectList.java for

sample code of this use case.

Steps

1.
2.
3.

Initialize Report Client.

Initialize Requestor UserInfo.

Call getReportObjectList of com.impetus.intera.reportobjects.ReportObjectManager to retrieve an
array List of Query Objects from the Intellicus repository.

public java.util.ArrayList getReportObjectList(java.lang.String
roType,UserInfo userInfo)

Parameters:
Report Object Type: Pass Enums.IRO.TYPE.QUERY.

The returned java.util.ArrayList will have each element as a Query Object retrieved from the

Intellicus repository.
Part of Sample Code implementing “get Query Object List”

ReportObjectManager reportObjectManager = new ReportObjectManager();
ArrayList reportObjList=new ArrayList();

ReportObject

repObjectQuery=ReportObject.createReportObject (Enums.IR0.TYPE.QUERY) ;
reportObjList=reportObjectManager.getReportObjectList (repObjectQuery.getType
(),requestorUserInfo);

Other related APIs are:

public ArrayList getReportObjectList(String roType, Filter filterObj, UserInfo userinfo)
public ArrayList getReportObjects(String roType, boolean cached, Userinfo userinfo)
public ArrayList getReportObjects(String roType, Userinfo userinfo)

Get Parameter Object List

This Java APl is used to retrieve the list of Query Objects from Intellicus repository.

161

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ReportObjects/ GetReportObjectList.java for

sample code of this use case.

Steps

1. CallgetReportObjectList of com.impetus.intera.reportobjects.ReportObjectManager to retrieve an
array List of Query Objects from the Intellicus repository.

public java.util.ArraylList getReportObjectList(java.lang.String
roType,UserInfo userInfo)

Parameters:
Report Object Type: Pass Enums.IRO.TYPE.QUERY.

The returned java.util.ArrayList will have each element as a Query Object retrieved from the

Intellicus repository.
Part of Sample Code implementing “get Parameter Object List”.

ReportObjectManager reportObjectManager = new ReportObjectManager();

ArrayList reportObjList=new ArrayList();

ReportObject repObjectQuery=ReportObject.createReportObject(Enums.IR0.TYPE.
PARAMETER) ;
reportObjList=reportObjectManager.getReportObjectList(repObjectQuery.getType(), requ
estorUserInfo);

Delete Report Object
This Java APl is to delete an existing Report Object from Intellicus Repository.

For deleting a report object, you would require to provide the name of the Query Object to be deleted. If
report object with the given name exists, then that would be deleted, otherwise it gives an error message
that “No such Query Object Found”.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ReportObjects/ DeleteReportObject.java for

sample code of this use case.

Steps:

1. Initialize Report Client.
. Initialize Requestor UserInfo.
3. Get Report Object -Retrieve the Report Object to be deleted from the Intellicus Report repository.
For this, call getReportObjectByName() method of
com.impetus.intera.reportobjects.ReportObjectManager.

Public ReportObject getReportObjectByName (Enums.IRO.TYPE.QUERY,
String reportObjectName, UserInfo userInfo)

162

Parameter:

e Report Object type: Pass Enums.IRO.TYPE.QUERY for the Query Object.
e ReportObjectName: The name of the query object to be deleted.
e Userlnfo: Object of UserlInfo class.

//To get the Object for the Query Object Class.

QueryObject qoObj=(QueryObject)reportObjectManager.
getReportObjectByName (Enums.IRO.TYPE.QUERY, goName,userInfo);
Delete the Report Object — For deleting the Report Object, call
deleteReportObject method of
com.impetus.intera.reportobjects.ReportObjectManager

public void deleteReportObject(ReportObject reportObject,
UserInfo userInfo)

Parameters:

e ReportObject: Java object of Query object to be deleted.
e Userlnfo: Object of UserInfo class.

//This will used to Delete the Query Object.
reportObjectManager.deleteReportObject(qoObj,userInfo);
Part of Sample Code implementing “Delete Report Object”
ReportObjectManager reportObjectManager = new ReportObjectManager();
String qoName = "newqol";
QueryObject
qoObj=(QueryObject)reportObjectManager.getReportObjectByName(Enums.IR0.TYPE.
QUERY, goName, userInfo);
reportObjectManager.deleteReportObject(qoObj, requestorUserInfo);

Replace Query Object

Query object can be replaced by calling the replaceReportObject() method of

com.impetus.intera.reportobjects.ReportObjectManager.

reportObjectManager.replaceReportObject(g0bject,userInfo);

Part of Sample Code implementing “Replace Report Object”

ReportObjectManager reportObjectManager = new ReportObjectManager();
String qOName="TestReplace";

QueryObject

gObject=(QueryObject) reportObjectManager.getReportObjectByName(Enums.IR0.TYPE.QUERY
,q0Name, requestorUserInfo);

String colName = “BANKS.BANKID”;

String caption = “BankID”;

String width = “3”;

String dataType = “NUMBER”;

String grplLabelCaption = “Job”;

//create the column to be added and set its attributes.

163

QueryObjectColumn qocAdd = new
QueryObjectColumn("BANKS.BANKID", "BankID","3", "NUMBER") ;
gocAdd.setAlignment(1);

gocAdd.setHidden(false);
gqocAdd.setGroupLabelCaption(grpLabelCaption);

//add this column in the query object

gObject.addColumn(qocAdd) ;

reportObjectManager. replaceReportObject(qObject, requestorUserInfo);

Other related APIs for accessing QO/PO are:

1. public LinkedHashMap getAllPOMap()
2. public LinkedHashMap getAllQOMap()

OLAP
Import

//0LAP related imports

import com.impetus.intera.layout.datasource.qo.Q0ODataSource;
import com.impetus.intera.layout.upx.FetchDataSource;

import com.impetus.intera.reportobjects.CubeObject;

import com.impetus.intera.reportobjects.QueryObjectColumn;
import com.impetus.intera.reportobjects.QueryObjectFacade;
import com.impetus.intera.reportobjects.ReportObjectException;
import com.impetus.intera.reportobjects.ReportObjectManager;
import com.intellica.client.common.EntityProperties;

import com.intellica.client.common.EntityProperty;

import com.intellica.client.common.Enums;

import com.intellica.client.layout.LayoutManager;

import com.intellica.client.olap.CubeDataSource;

import com.intellica.client.olap.DimMapping;

import com.intellica.client.olap.Dimension;

import com.intellica.client.olap.Hierarchy;

import com.intellica.client.olap.Level;

import com.intellica.client.olap.Measure;

import com.intellica.client.olap.MeasureGroups;

import java.util.ArraylList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

Cube Object
AddCube
This Java APl is used to create a new Cube Object in the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/OLAP/ AddCube.java for sample code of this use

case.

164

Steps:

1. |Initialize Report Client.
. Initialize Requestor UserInfo.
3. addReportObject() method of ReportObjectManager class

Method: addReportObject
This is the method of ReportObjectManager class i.e. used to add Cube Object in Repository

public void addReportObject(ReportObject reportObject,
UserInfo userInfo).

Parameters:

e ReportObject: Java object of Cube object to be added.
e UserlInfo: Object of UserInfo class.

Code Snippet of the sample code-
Set the Query Id for which Cube Object is to be created.

String queryId = "SampleCubeQuery";

Set other details.

String categoryId = "CT"; //Category in which cube object is to be added
String measureName = "Count";

String measureDataField = "Resourceld";

String measureSummaryFunction = "2"; //1 for sum, 2 for count

//Set cube object properties

CubeObject cubeObj = new CubeObject();
cubeObj.setCategoryIld(categoryId); //category Id where Cube Object is to be saved.
cubeObj.setName("Cube "+queryId);

cubeObj.setId("Cube "+queryId);

cubeObj.setCoType("INTERNAL") ;
cubeObj.setCubeUniqueName("Cube "+queryId);

FetchDataSource fetchDataSource = new FetchDataSource();
QODataSource goDataSrc = new QODataSource();
goDataSrc.setId(queryId); //Query 0Object Id
fetchDataSource.setSource("Q0");

fetchDataSource.setSource0Obj(qoDataSrc);

HashMap<String, FetchDataSource> cubeQueries = new HashMap<String,
FetchDataSource>();

cubeQueries.put("CUBE_QUERY "+queryId, fetchDataSource);
cubeObj.setCubeQueries(cubeQueries);

Adding Dimensions
For adding dimensions, first iterate over the list of columns/fields of Query object, then add them.

ArrayList<Dimension> dimensionList = new ArraylList<Dimension>();
//Getting columns/fields in Q0 so as to iterate to create Dimensions

165

QueryObjectFacade queryObjFacade =

(QueryObjectFacade) rom.getReportObjectFacadeById(Enums.IRO.TYPE.QUERY, queryId,
requestorUserInfo);

ArrayList<QueryObjectColumn> goColumnsList = queryObjFacade.getColumnList();
Iterator itr = qoColumnsList.iterator();

//iterating through the Column List

while(itr.hasNext()){
QueryObjectColumn qoColumn = (QueryObjectColumn)itr.next();
System.out.println("Column Name = "+qoColumn.getColumnName());
columnName = qoColumn.getColumnName() ;

dimMappingObj = new DimMapping();
dimMappingObj.setDimensionId("DIMENSION "+columnName) ;
dimMappingMap.put ("DIMENSION "+columnName,dimMapping0bj);

Dimension dimensionObj = new Dimension();
dimension0bj.setDimID ("DIMENSION "+columnName);
dimensionObj.setIsValuesRestricted(false);
dimensionObj.setGISEnabled(false);
dimension0bj.setUniqueName ("DIMENSION "+columnName);
dimensionObj .setName(columnName) ;
dimensionObj.setType("REGULAR") ;
HashMap<String, CubeDataSource> dataSourceObj = new HashMap<String,
CubeDataSource>() ;
CubeDataSource cubeDataSourceObj = new CubeDataSource();
cubeDataSource0bj.setId("CUBE QUERY "+queryId);
cubeDataSourceObj.setType("REFERENCED") ;
dataSourceObj.put ("CUBE QUERY "+queryId,cubeDataSourceObj);
dimensionObj.setFetchSourcesForDimension(dataSourceObj);

ArrayList<Hierarchy> hierarchylList = new ArraylList<Hierarchy>();
Hierarchy hierachy = new Hierarchy();
hierachy.setName("HIERARCHY") ;
hierachy.setUniqueName ("DIMENSION HIERARCHY "+columnName);
ArraylList<Level> levellList = new ArraylList<Level>();
Level level = new Level();
//to allow All as member value of a dimension
if(allowAll){
level.setAll(true);
level.setUniqueName ("DIEMENSION LEVEL 0");
level.setName("Hierarchy.ALL");
levellList.add(level);
1
level = new Level();
level.setAll(false);
level.setUniqueName("DIEMENSION LEVEL 1");
level.setName(columnName) ;
level.setDataField(columnName) ;
level.setAssociatedDimQueryId("CUBE_QUERY "+queryId);
levellList.add(level);

hierachy.setlLevels(levellList);

166

hierarchylList.add(hierachy);
dimensionObj.setHierarchies(hierarchylList);
dimensionList.add(dimensionObj);

cubeObj.setDimMappings (dimMappingMap) ;

Adding the measure Dimension

//Adding Measure dimension

Dimension dimensionObj = new Dimension();
dimensionObj.setDimID("Dim Measures");
dimension0bj.setIsValuesRestricted(false);
dimension0bj.setGISEnabled(false);
dimensionObj.setUniqueName ("Measures");
dimensionObj.setName("Measures");
dimensionObj.setType("MEASURE") ;

ArrayList<Hierarchy> hierarchylList = new ArraylList<Hierarchy>();
Hierarchy hierachy = new Hierarchy();

hierachy.setUniqueName ("Measures");

ArrayList<Level> levellList = new ArraylList<lLevel>();

Level level = new Level();

level.setAll(false);
level.setDataType("Regular");
level.setUniqueName("MeasuresLevel");
levellList.add(level);

hierachy.setlLevels(levellList);
hierarchylList.add(hierachy);
dimensionObj.setHierarchies(hierarchylList);
dimensionList.add(dimensionObj);

cubeObj.setDimensions(dimensionlList);

String measureld = "MEASURE 1";

MeasureGroups measureGrpsObj = new MeasureGroups();

Map<String, ArrayList<String>> measureMap = new HashMap<String,
ArraylList<String>>();

ArrayList<String> measureIldList = new ArraylList<String>();
measureldlList.add(measureld);

measureMap.put("MeasureGroup", measureldList);

measureGrps0bj .setMeasureGroups (measureMap) ;

measureGrps0bj .setMeasureGroups (measureMap) ;

Map<String, CubeDataSource> dataSourceMap = new HashMap<String, CubeDataSource>();
ArrayList<String> DataSourceld = new ArraylList<String>();

CubeDataSource cubeDataSrcObj = new CubeDataSource();
cubeDataSrcObj.setId("CUBE _QUERY "+queryId);

cubeDataSrcObj.setType("REFERENCED") ;

dataSourceMap.put("CUBE_QUERY "+queryId, cubeDataSrcObj);
measureGrpsObj.setFetchSources(dataSourceMap) ;

167

cubeObj.setMeasureGroups (measureGrps0bj);

//Adding Measures
HashMap<String,Measure> measurelList = new HashMap<String,Measure>();
Measure measureObj = new Measure();

measureObj.setId(measureld);
measureObj.setUniqueName(measureld);
measureObj.setName(measureName) ;
measureObj.setIsDefault(true);
//measure0bj.setFormatType("2");
measureObj.setFormat("0");
measure0Obj.setQueryID("CUBE QUERY "+queryId);
measureObj.setDataField(measureDataField);
measureObj.setSummaryFunction(measureSummaryFunction);
measureList.put(measureld, measureObj);
cubeObj.setMeasures(measurelList);

Calling addReportObject() method

//Method used to add Cube Object in Repository
rom.addReportObject (cubeObj, requestorUserInfo);

Get Dimensions List
This Java APl is used to get the list of dimensions for provided Cube Object Id.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/OLAP/GetDimensionList.java for sample code of

this use case.

Steps:

1. Initialize Report Client.
. Initialize Requestor UserInfo.
3. addReportObject() method of ReportObjectManager class
Method: getDimensions

This is the method of CubeObject class i.e. used to get the dimensions of requested Cube object

public ArrayList<Dimension> getDimensions()

Code Snippet of the sample code-
Set the Cube Object Id whose dimensions are to be fetched.

String cubeName = "SampleCubeQuery";

Getting Cube Object Detail to get its dimensions.

168

OLAPManager olapMgr = new OLAPManager();
CubeObject cubeObj = (CubeObject)olapMgr.getCubeObjectDetail (cubeName, cubeName,
requestorUserInfo);
ArrayList<Dimension> dimList = cubeObj.getDimensions();
Dimension dim = null;
//iterating through the list of dimensions
for(int i=0;i<dimlList.size();i++){
dim = (Dimension)dimList.get(1i);
System.out.println("Dimension Id = "+dim.getUniqueName()+", Name =
"+dim.getName());

}

Delete Cube Object
This Java APl is used to delete the cube object from the Intellicus Repository for given Cube Object Id.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/OLAP/DeleteCubeObiject.java for sample code of

this use case.

Steps:

1. Initialize Report Client.
. Initialize Requestor UserInfo.
3. Delete the Report Object

Method: deleteReportObject
For deleting the Report Object, call deleteReportObject method of ReportObjectManager
com.impetus.intera.reportobjects.ReportObjectManager

public void deleteReportObject(ReportObject reportObject,
UserInfo userInfo)

Parameters:

e ReportObject: Java object of Cube object to be deleted.
e UserlInfo: Object of UserInfo class.

//This will be used to delete the Cube Object.
reportObjectManager.deleteReportObject(qoObj,userInfo);

Part of Sample Code implementing “Delete Cube Object”
Set the Cube Object Id that is to be deleted.

//Cube object Id that is to be deleted
String cubeObjId = "Cube QOForCube 1";

Getting the object of Cube and deleting it from Repository

169

//getting ReportObject corresponding to provided Cube Object Id
ReportObject rObj = (ReportObject)rom.getReportObject
(Enums.IRO.TYPE.CUBEOBJECT, cubeObjId, cubeObjId, true ,requestorUserInfo);
//Method to delete Cube

rom.deleteReportObject(rObj, requestorUserInfo);

Build Cube Object
This Java APl is used to build the cube for provided Cube Object.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/OLAP/BuildCubeObject.java for sample code of

this use case.

Steps:

1. Initialize Report Client.
. Initialize Requestor UserInfo.
3. Build the Cube Object

Method: buidCubeObject
For building the cube, call method of ReportObjectManager
com.impetus.intera.reportobjects.ReportObjectManager

public void buildCubeObject(String cubeBuildXML, UserInfo userInfo) throws
ReportObjectException{

Parameters:

e cubeBuildXML: XML of CubeObject Build.
e Userlnfo: Object of UserInfo class.

Part of Sample Code implementing “Build Cube Object”
Set the Cube Object Id that is to be build.

//Cube object Id that is to be deleted
String cubeObjId = "Cube QOForCube 1";

Getting the object of Cube and deleting it from Repository

String buildXML = "<CUBEOBJECT BUILD ID=\""+cubeObjId+"\">\n";
buildXML += "\t\t\t<BUILD INFO>\n\t\t\t\t<PROPERTIES>\n";
buildXML += "\t\t\t\t<PARAM NAME=\"BUILD ON HADOOP\">\n";
buildXML += "\t\t\t\t\t<VALUE><![CDATA[FALSE]]></VALUE>\n";
buildXML += "\t\t\t\t</PARAM>\n";

buildXML += "\t\t\t\t</PROPERTIES>\n";

buildXML += "\t\t\t</BUILD INFO>\n";

buildXML += "<SCHEDULE INFO
JOBTYPE=\"NOW\ "></SCHEDULE INF0></CUBEOBJECT BUILD>";

//method used to build the cube object.

170

rom.buildCubeObject (buildXML, requestorUserInfo);

Get Build Status

This Java APl is used to get the build status for the given Cube.

Posiible values of build status -

"BUILDING", "COMPLETED", "PENDING", "FAILED", "BUILD_SUBMITTED"

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/OLAP/GetBuildStatus.java for sample code of

this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor UserInfo.

Get the build status for the Cube Object

Method: getCubeObjectBuildStatus

For getting the build status, call method of ReportObjectManager

com.impetus.intera.reportobjects.ReportObjectManager

public COBuildStatus getCubeObjectBuildStatus(Filters filters,UserInfo

userInfo) throws ReportObjectException{

Parameters:

o filters: filters to get CubeObject Build Status
e UserlInfo: Object of UserInfo class.

Part of Sample Code implementing “Get Build Status”
Set the Cube Object Id that is to be build.

//Cube object Id whose build status is to get
String cubeObjId = "SalesCube";

Getting the object of Cube and deleting it from Repository

Filters filters = new Filters();

Filter filter = new Filter("CUBEOBJECT ID", "", cubeObjId);
filters.add(filter);

COBuildStatus coBuildStatus = rom.getCubeObjectBuildStatus(filters,
requestorUserInfo);

System.out.println("Build Status = "+coBuildStatus.getStatus()

171

Cancel Build

This Java APl is used cancel the build for which build cube request is sent to Report Engine

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/OLAP/CancelBuild.java for sample code of this

use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userinfo.
Get the build status for the Cube Object

Method: cancelCubeObjectBuild
For cancelling the cube build process, call method of ReportObjectManager
com.impetus.intera.reportobjects.ReportObjectManager

public void cancelCubeObjectBuild(HashMap requestParams,UserInfo userInfo)
throws ReportObjectException{

Parameters:

e requestParams: Request Params required to cancel Cube Object Build(REQUEST_ID)
e UserlInfo: Object of UserInfo class.

Part of Sample Code implementing “Cancel Build”
Set the Cube Object Id that is to be build.

//Cube object Id whose build status is to get
String cubeObjId = "SalesDataCube";

Getting the object of Cube and deleting it from Repository

Filters filters = new Filters();

Filter filter = new Filter("CUBEOBJECT ID", "", cubeObjId);

filters.add(filter);

COBuildStatus coBuildStatus = rom.getCubeObjectBuildStatus(filters,

requestorUserInfo);

COBuildingStatus cbStatus = (COBuildingStatus)coBuildStatus.getCubeStatus();

buildRequestId = cbStatus.getBuildRequestId();

//if build is not yet completed, then only cancel build process

if (!'buildRequestId.isEmpty()){

requestParams.put(InteraConstants.SysParams.REQUESTID GUID, buildRequestId);
//method to cancel build process
rom.cancelCubeObjectBuild(requestParams, requestorUserInfo);

172

Database connection Management

Get the list of all the DB connections present in the Intellicus Repository

This Java APl is used to get the list of all the DB connections present in the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DBConnection

Mangement/GetDBConnectionList.java for sample code of this use case.

Steps:

1.
2.
3.

Initialize Report Client.
Initialize Requestor UserInfo.
Create a Layout Manager class object for report layout management related operations

LayoutManager lm = new LayoutManager();

Get the list of All Database Connections.
Method : getDBConnectionList

public java.util.HashMap getDBConnectionList(UserInfo userInfo)
throws LayoutHandlerException

This method returns the list of report engine to database connection names.

Parameters:

e UserInfo: UserInfo For authorization.
Returns:
HashMap of Database Connection names and Driver details as ArrayList.

HashMap map=1m.getDBConnectionList (requestorUserInfo);

Create DB Connection in the Intellicus Repository

This Java APl is used to create a new Database Connection in the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/DBConnection

Mangement/CreateDBConnection.java for sample code of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor Userlnfo.
Create a Layout Manager class object for report layout management related operations

LayoutManager lm = new LayoutManager();

Set url for DBDriver.

173

file:///C:/Users/payal.khandelwal/AppData/Roaming/Microsoft/Word/Intellicus/MohanSir's%20Training%20Data/REClientAPI/com/intellica/client/exception/LayoutHandlerException.html

DBDriver driverDB = new DBDriver();
//Making an object of hashmap for DBDriver
HashMap hMap = new HashMap();

String server = “192.168.33.52";

String provider = “MSSQL”;

String port = “1433”;

String database = “M90”;

String driverVersion = “2005”;

driverDB.setUrl("jdbc:sqlserver://192.168.33.52:1433;databaseName=M90;select
Method=cursor;user=sa;password=intellicus");
driverDB.setProvider(provider);

hMap.put ("SERVER", server);
hMap.put("PORT", port);

hMap.put ("DATABASE" ,dataBase) ;

hMap.put ("DRIVERVERSION",driverVersion);

driverDB.setAttrHash(hMap) ;

Create an instance of DB Connection and set related properties

”

String userId = “sa”;
String passwrd = “123456";

String connName = “MyConnection”;
//Making an object of DBConnection
DBConnection dbConn = new DBConnection();
dbConn.setDbDriver(driverDB) ;
dbConn.setUserId(userId);
dbConn.setPassword(passwrd) ;
dbConn.setConnectionName(connName) ;

Add DB Connection to Report Server.
Method : addReportServerConnection

public java.lang.String addReportServerConnection
(DBConnection dbConnection, UserInfo userInfo)
throws LayoutHandlerException

This method adds a new Report Server Connection in the Repository.

Parameters:

e DbConnection: DBConnection object which needs to be added.
e Userlnfo: The Userinfo object.

Returns:

e String: The status of operation returned by the Report Engine

Im.addReportServerConnection(dbConn, requestorUserInfo);

174

Create DB Connection for File Data Source

This Java APl is used to create a new Database Connection in the Intellicus Repository for File Type Data

Source.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APls/DBConnection

Mangement/CreateDBConnectionFromFileSource.java for sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor Userinfo.
3. Create a Layout Manager class object for report layout management related operations

LayoutManager lm = new LayoutManager();

4, Seturl for DBDriver.

DBDriver driverDB = new DBDriver();
//Making an object of hashmap for DBDriver
HashMap hMap = new HashMap() ;

driverDB.setUrl("jdbc:FS:////192.168.33.93/FilesForConnection/csv");
driverDB.setProvider("FILES");

//set driver type

hMap.put ("DRIVERTYPE", "NETWORK PATH") ;

driverDB.setAttrHash(hMap);

5. Create an instance of DB Connection and set related properties

String connName = “FileConnection”;

//Making an object of DBConnection

DBConnection dbConn = new DBConnection();
dbConn.setDbDriver(driverDB) ;
dbConn.setConnectionName(connName) ;

//set username

dbConn.setUserId("UserID");

//set password

dbConn.setPassword("pwd123");

//set Initial Connections
dbConn.setInitialConnections("2");

//Set incremental size

dbConn.setIncrementSize("4");

//Set Maximum number of Connections
dbConn.setMaxConnections("8");

//Set true for Read Only Connection or else set false
dbConn.setIsReadOnly(false);

//Set true to set it as Default Connection
dbConn.setIsDefault(false);

//To anable/disable Metadata Cache for the Connection

175

dbConn.setMetaDataCacheEnabled(true);

6. Add DB Connection to Report Server.
Method : addReportServerConnection
public java.lang.String addReportServerConnection

(DBConnection dbConnection, UserInfo userInfo)
throws LayoutHandlerException

This method adds a new Report Server Connection in the Repository.

Parameters:

e DbConnection: DBConnection object which needs to be added.
e UserlInfo: The Userinfo object.

Returns:

e String: The status of operation returned by the Report Engine

1m.addReportServerConnection(dbConn, requestorUserInfo);

Delete DB Connection from the Intellicus Repository
This Java APl is used to delete an existing Database Connection in the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APls/DBConnection

Mangement/DeleteDBConnection.java for sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor UserInfo.
3. Create a Layout Manager class object for report layout management related operations

LayoutManager lm = new LayoutManager();

4. Getthe DB Connection list and iterate through each element of list so as to get the given connection
i.e. to be deleted. If the connection exists, then delete it.

Method: deleteReportServerConnection
public java.lang.String deleteReportServerConnection

(DBConnection dbConnection, UserInfo userInfo)
throws LayoutHandlerException

This method deletes the given report server connection from the repository.

Parameters:

e DbConnection: DBConnection object which needs to be deleted.

176

e Userlnfo: The Userinfo object.

Returns:

e String: The status of operation returned by the Report Engine.

Part of Sample Code implementing “deleteReportServerConnection”:

Audit Log
Get Audit Detail
This Java APl is used to get the Audit detail information from the Intellicus Repository.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Audit Log/GetAuditDetail.java for sample code of
this use case.

Steps:

177

Initialize Report Client.
Initialize Requestor Userinfo.
Create an Audit Manager controller class object for audit management related operations.

AuditManager am= new AuditManager();

Set the filter for values fields.

// prepare parameters for filtering
Date fromDate = new Date(2006-1900 ,2-1,01);
Date toDate = new Date(2006-1900,3-1,9);

String reportName = "Product";
String username = "Admin";
String reportId = "91FEE269-3AEE-C23D-6F04-7A9979BEBEQ9" ;

String categoryId = "Test";

Filter filter=new Filter();
filter.setFilterField("REPORTNAME", reportName) ;
filter.setFilterField("CATEGORYID", categoryId);
filter.setFilterField("FROMDATE", fromDate);
filter.setFilterField("TODATE", toDate);
filter.setFilterField("REPORTID", reportId);
filter.setFilterField("USERID",userName);

Get the Audit Log details based on filter applied.

Method : getAuditLoglist

public java.util.ArraylList getAuditlLoglList
(java.lang.String fromDate,
java.lang.String toDate,
java.lang.String reportName,
java.lang.String userName,
java.lang.String reportld,
java.lang.String categorylId,

UserInfo userInfo)
throws AuditManagerException

This method will provide the list containing audit log information.

Parameters:

o Filter: Filter which can take request filters from Enums.Filters.AuditLog
ie.
Enums.Filters.AuditLog.REPORTNAME
Enums.Filters.AuditLog.CATEGORYID
Enums.Filters.AuditLog.FROMDATE
Enums.Filters.AuditLog. TODATE

Enums.Filters.AuditLog.REPORTID

178

file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html

Enums.Filters.AuditLog.USERID

e userlnfo: The User Information Object
Returns:

ArrayList of Audit Log information of various reports.Each element of list is object of class
AuditLogData.

ArrayList arraylList=am.getAuditLogList(filter, requestorUserInfo);

Delete Audit Detail

This Java APl is used to delete Audit Log information.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Audit Log/DeleteAuditLog.java for sample code

of this use case.

Steps:

1.

Initialize Report Client.
Initialize Requestor UserInfo.
Create a Audit Manager controller class object for audit management related operations.

AuditManager am= new AuditManager();

Set the filter for values fields that are to be deleted in Audit Details.

Date fromDate = new Date(2006-1900 ,2-1,01);
Date toDate = new Date(2006-1900,3-1,9

String reportName = "Product";

String username = "Admin";

String categoryId = "Test";

String reportId = "91FEE269-3AEE-C23D-6F04-7A9979BEBEQ9";

Filter filter=new Filter();
filter.setFilterField("REPORTNAME", reportName) ;
filter.setFilterField("CATEGORYID", categoryId);
filter.setFilterField("FROMDATE", fromDate);
filter.setFilterField("TODATE", toDate);
filter.setFilterField("REPORTID", reportId);
filter.setFilterField("USERID",userName) ;

Delete the Audit Log List as per filter
Method : deleteAuditLogList

public void deleteAuditLoglList(Filter filter, UserInfo userInfo)
throws AuditManagerException

This method will delete audit log information from the Report Engine.

179

file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html

Parameters:
o Filter: Filter which can take request filters from Enums.Filters.AuditLog
i.e.
Enums.Filters.AuditLog.REPORTNAME
Enums.Filters.AuditLog.CATEGORYID
Enums.Filters.AuditLog.FROMDATE
Enums.Filters.AuditLog. TODATE
Enums.Filters.AuditLog.REPORTID
Enums.Filters.AuditLog.USERID
e UserInfo: The User Information Object

am.deleteAuditLoglList(filter, requestorUserInfo);

Data Masking

Save Dtaa Masking
This Java APl is used to save the data masking details.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/Data Masking/SaveData Masking.java for sample

code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor Userlnfo.
3. Create aninstance of SecurityManager.

SecurityManager sMgr = SecurityManager.getInstance();

4. Setthe various required details, like Connection name, table name, column name, masking
character etc.

MaskedData maskedData = new MaskedData();

ArrayList<ConnMaskedDetails> connList = new ArraylList<ConnMaskedDetails>();
ConnMaskedDetails connMaskedDetailsObj = new ConnMaskedDetails();
connMaskedDetailsObj.setConnectionName ("DemoReportDB"); //Connection Name
ArrayList<DBSchema> dbSchemalList = new ArraylList<DBSchema>();

DBSchema dbSchemaObj = new DBSchema() ;

DBMaskedEntities dbMaskedEntitiesObj = new DBMaskedEntities();
DBMaskedEntity dbMaskedEntityObj = new DBMaskedEntity();
dbMaskedEntityObj.setDBEntityName("BRANCH"); //Table name
dbMaskedEntityObj.setDBEntityType("0");

180

file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Filter.html
file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html
file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html
file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html
file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html
file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html
file:///C:/Users/payal.khandelwal/AppData/Program%20Files/Intellicus/Docs/Client_javadoc/com/intellica/client/common/Enums.Filters.AuditLog.html

Column columnObj = new Column();

columnObj .setColumnId("365372309"); //Some GUID for setting Column Id
column0bj .setColumnName ("BRANCH ID"); //column Name
columnObj.setColumnMaskChar("#"); //Mask character

columnObj .setMaskLevel("1"); //For Masking only on provided connection, ©
for Mask for All Connections

columnObj.setMaskType(0); //for masking completely set o, and for masking
partially set 1

columnObj.setColumnOpcode("ADD");//ADD for adding data masking on a column,
UPDATE for updating data masking on already masked column

ArrayList<ColGrant> colGrantList = new ArrayList<ColGrant>();

ColGrant colGrantObj = new ColGrant();

colGrantObj.setOrgId("HostOrg"); //Organization for exceptional users and
roles

colGrantObj.addRoleId("Admin"); //Role

colGrantObj.addUserId("John"); //User

colGrantObj.addUserId("Mary"); //User

colGrantList.add(colGrantObj);

columnObj.setColGrantList(colGrantList);

dbMaskedEntityObj.addColumn(columnObj) ;
dbMaskedEntitiesObj.addMaskedEntity (dbMaskedEntity0bj);
dbSchemaObj .setDbMaskedEntities (dbMaskedEntitiesObj);
dbSchemalList.add(dbSchemalbj) ;
connMaskedDetailsObj.setDbSchemalList (dbSchemalList);

connList.add(connMaskedDetailsObj);
maskedData.setConnList(connList);

5. Save the data masking details.
Method : saveColsSecuritylnfo

public void saveColsSecurityInfo(String strCLRSavelList, UserInfo userInfo)
throws ISecurityException

Parameters:

e maskedData : Object of {@link com.intellica.client.security.MaskedData} with all the
column masking™ details filled.
e userlnfo: userinfo object keeping the detail about the current user

Get Masked Columns
This Java APl is used to get the Masked columns details for specified connection

Refer to <Intellicus_Install_Path>/SampleCodes/Java APls/Audit Log/GetMaskedColumns.java for sample

code of this use case.

Steps:

181

Initialize Report Client.
Initialize Requestor Userinfo.
Create an instance of SecurityManager.

SecurityManager sMgr = SecurityManager.getInstance();

Get the masking details.
Method: getColsSecuritylnfo
Returns the security information of all columns as ArrayList of ColSecurityInfo class.

public MaskedData getColsSecurityInfo(Filter filter, UserInfo userInfo)
throws ISecurityException

Parameters:

o filter: Filter object to get the masked details of given filter creteria only.

Possible values of filter are {@link

com.intellica.client.common.Enums.Filters.ColumnMaskDetails}.

e userlnfo: userinfo object keeping the detail about the current user
Below is the code snippet for iterating through the masked column list-

MaskedData maskedData = sMgr.getColsSecurityInfo(filter, requestorUserInfo);
ArraylList connList = maskedData.getConnList();
//Iterating over the connections to get masked columns for that connection
for(int i=0;i<connlList.size();i++){
ConnMaskedDetails connMaskedDetailObj =
(ConnMaskedDetails)connList.get(1i);
ArrayList dbSchemalList = connMaskedDetailObj.getDbSchemalList();
for(int j=0;j<dbSchemalist.size();j++){
DBSchema dbSchemaObj = (DBSchema)dbSchemalList.get(j);
DBMaskedEntities dbMaskedEntitiesObj =
dbSchemaObj .getDbMaskedEntities();
ArrayList dbMaskedEntitylList =
dbMaskedEntitiesObj.getMaskedEntityList();
for(int k=0;k<dbMaskedEntitylList.size();k++){
DBMaskedEntity dbMaskedEntityObj =
(DBMaskedEntity)dbMaskedEntitylList.get (k) ;
System.out.println("Table Name =
"+dbMaskedEntityObj.getDBEntityName()); //Table name
System.out.println("-----------------~----------- ");
ArrayList columnList =
dbMaskedEntityObj.getColumnList();
//Iterating over the masked column list
for(int
1=0; Ll<dbMaskedEntityObj.getColumnListSize(); 1++){
Column colObj =
(Column)dbMaskedEntity0bj.getColumn(1l);
System.out.println("Column Name =
"+colObj.getColumnName()+", MaskType = "+colObj.getMaskType()+", MaskLevel =
"+colObj.getMaskLevel()+", MaskChar = "+colObj.getColumnMaskChar());

182

ReporServerProperty
GetReportEnginePortAndIP

This Java APl is used to get Report Engine's IP Address and Port number of the Report Engine.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ ReportServerProperty/
GetReportEnginePortAndIP.java for sample code of this use case.

Steps:

1. Initialize Report Client.
2. Initialize Requestor UserInfo.
Create a Layout Manager class object for report layout management related operations

w

4. GetthelIP of Report Engine.

Method : getReportEnginelP

Get report Engine IP, sets through any of the constructor or if not then returns the default value
from ConfigManager class.

Returns:

String: Report Engine IP

5. Getthe port of Report Engine.

Method : getReportEnginePort

Get report Engine Port, sets through any of the constructor or if not then returns the default value
from ConfigManager class.

Returns:

String : report Engine Port

183

// method used to get the Port of Report Engine
// Returns report Engine Port as Integer value
int reportEnginePort=1lm.getReportEnginePort();

GetReportServerProperty

This Java APl is used to get SMTP Server Values of the Report Engine.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APls/

ReportServerProperty/GetReportServerProperty.java for sample code of this use case.

Steps:

1.

Initialize Report Client.

Initialize Requestor Userlnfo.

Create a SecurityManager class object for getting the controller information for all Administration
related operations

SecurityManager sMgr=SecurityManager.getInstance();

4.

Get the Property values of Report Server.
Method : getReportServerPropValue

public java.lang.String getReportServerPropValue
(java.util.ArraylList reportServerPropList,
java.lang.String key,UserInfo userInfo)
throws ClientException

This method gets the value of Report Server Property from the Report Server for given value of key

Parameters:

e UserlInfo: The UserInfo object.
e ReportServerPropList: ArrayList of all Report Server Properties
e key: Name of property whose value is required

Returns:

String representing required property value. If no property is identified with given key then this

Method returns null.
Part of Sample Code implementing “getReportServerPropValue” :

//This returns arraylist of values of Report Server properties
ArrayList arrList = sMgr.getReportServerPropDetails(requestorUserInfo);

Get all the property values of Report Server.

//Set the key for the server property.This key is the name of the property as specified in the
ReportEngine.properties at < Intellicus_Install_path >\ReportEngine\Config folder

184

file:///C:/Users/payal.khandelwal/AppData/Roaming/Microsoft/Word/Intellicus/MohanSir's%20Training%20Data/REClientAPI/com/intellica/client/common/UserInfo.html

String key="SMTP_SERVER";//Value of Report Server property
String value=sMgr.getReportServerPropValue(arrList ,key, requestorUserInfo);
System.out.println ("SMTP_SERVER Value : "+value);
key="LISTENER PORT";
value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println (" LISTENER PORT Value : "+value);
key="DATABASE CONNECTION TIMEOUT";
value=sMgr.getReportServerPropValue(arrList ,key,

requestorUserInfo);
System.out.println ("DATABASE CONNECTION TIMEOUT Value : "+value);

key="SECURITY FEATURES";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("SECURITY FEATURES Value : "+value);

key ="AUDIT LOG";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("AUDIT LOG Value : "+value);

key = "QUEUE SIZE";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("QUEUE_SIZE Value : "+value);

key = "REMOTE_SESSION TIMEOUT";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("REMOTE SESSION TIMEOUT Value : "+value);

key = "RTF_FIELD CONTROL MAP";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("RTF_FIELD CONTROL MAP Value : "+value);

key = "DATA SOURCE FETCH SIZE";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("DATA SOURCE FETCH SIZE Value : "+value);

key = "AUDITLOG PURGE TIME";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("AUDITLOG PURGE TIME Value : "+value);

key = "CACHE PURGE TIME";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println ("CACHE PURGE TIME Value : "+value);

key = "AUTHORIZATION CACHE TIMEOUT";

185

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);
System.out.println("AUTHORIZATION CACHE TIMEOUT Value :
"+value);

key = "SCHD JOB DISPATCH QUEUE SIZE";

value=sMgr.getReportServerPropValue(arrList ,key,
requestorUserInfo);

System.out.println("SCHD JOB DISPATCH QUEUE SIZE Value :
"+value);

SetReportServerProperty

This Java APl is used to set the SMTP Server Values of Report Engine.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/ ReportServerProperty/
SetReportServerProperty.java for sample code of this use case.
Steps:

1. Initialize Report Client.
Initialize Requestor Userlnfo.

3. Create a SecurityManager class object for getting the controller information for all Administration

related operations

SecurityManager sMgr=SecurityManager.getInstance();

4. Setthe Property values of Report Server by putting them in a Hashmap.
HashMap ServerPropHMap= new HashMap() ;

String key="SMTP_ SERVER";
String value="192.168.100.20";
ServerPropHMap.put (key,value);

key="DATABASE CONNECTION TIMEOUT";
value="800";
ServerPropHMap.put (key,value);

key="SECURITY_ FEATURES";
value="enabled";
ServerPropHMap.put (key,value);

key="QUEUE_SIZE";
value="900";
ServerPropHMap.put (key,value);

key="L0G";
value="../logs";
ServerPropHMap.put(key,value);

key="PAGE _CHUNKSIZE";
value="10";

186

5. Save these property values set in last step for Report Server

Method : saveReportServerProperties

This method saves the modified server properties and returns the status sent by the Report Server.

Parameters:

e ReportServerPropMap: HashMap which keeps the property name as key and its its
concerning value as the value.
e Userinfo: The Userlnfo object.

Returns:

e String: Having the status return by the Report Engine after modifying the property file.

Part of Sample Code implementing “setReportServerPropValue” :

ReporServerConnectivity

TestServerConnectivity

This Java APl is used to check whether the Report Server is running on the specified IP and Port or not.
Refer to Intellicus_Install_Path>/SampleCodes/Java APIs/TestServerConnectivity/

TestServerConnectivity.java for sample code of this use case.

187

Steps:

1. Initialize Report Client.
2. Create a Security controller class object using its factory for user management related operations

SecurityManager sMgr=SecurityManager.getInstance();
3. Getthe Security Mode of Report Engine.
Method : getSecurityMode

public boolean getSecurityMode()
throws ISecurityException

This method returns the security mode read from the report engine.

Returns:

If the security mode is on on the report engine, it returns true. In other cases, it returns false.
boolean securityMode = false;

//If it gives Exception, then failed to connect Report Server
securityMode=sMgr.getSecurityMode();

User Preferences

GetUserPreferences
This Java APl is used to get the default User Preferences set by the User.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APIs/User Preferences/GetUserPreferences.java for

sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor Userinfo.
3. Create a PersonalizationManager class object for UserPrefernces and Dashboard related settings.

PersonalizationManager pm=new PersonalizationManager();

4. Getthe User Preferences in the instance of Preferences.
Method: getUserPreferences
public Preferences getUserPreferences

(UserInfo userInfo)
throws PersonalizationHandlerException

This method returns Preferences for the given user.

Parameters:

188

e Userinfo: The Information about the user to be used for authorization. Also the user whose
Preferences will be returned.

Returns:
Preferences for the user.

Preferences userPref = null;
userPref= pm.getUserPreferences(requestorUserInfo);

Get all the User Preferences

//Returns the defaultConnection
String defaultCon = userPref.getDefaultConnection();

//Returns the user's preferred default portal theme
String portalTheme = userPref.getDefaultPortalTheme();

//Method returns default stylesheet of the user
String defaultStylesheet = userPref.getDefaultStylesheet();

//Method returns the user's preferred deliver location
String deliverylLocation = userPref.getDeliverylLocation();

//Method returns the user's preferred report format
String defaultFormat = userPref.getFormat();

//Method returns the user's preferred language
String prefLanguage = userPref.getPreflLanguage();

//Method returns the number of recent reports to be shown
int reportCount = userPref.getReportCount();

//Method returns the Boolean value whether to show the inbox
Boolean showInbox = userPref.getShowInbox();

//This Method returns default template name used for all reports
String templateName = userPref.getTemplateName();

// Method returns the Boolean value whether to show the recent reports
or not
Boolean showRecentReports = userPref.getShowRecentReports();

System.out.println("Default Connection : "+defaultCon);
System.out.println("Default Portal Theme : "+portalTheme);
System.out.println("Default Stylesheet:"+defaultStylesheet);
System.out.println("Delivery Location : "+deliverylLocation);
System.out.println("Default Format : "+defaultFormat);
System.out.println("Default Preferred Language

"+preflLanguage) ;

System.out.println("Report Count : "+reportCount);
System.out.println("Show Inbox : "+showInbox);
System.out.println("Template Name : "+templateName);

189

System.out.println("Show Recent Reports
"+showRecentReports);

setUserPreferences

This Java APl is used to set the default User Preferences by the User.

Refer to <Intellicus_Install_Path>/SampleCodes/Java APls/User Preferences/SetUserPreferences.java for

sample code of this use case.

Steps:

1. Initialize Report Client.
Initialize Requestor Userinfo.
3. Create a PersonalizationManager class object for UserPrefernces and Dashboard related settings.

PersonalizationManager pm=new PersonalizationManager();

4. Getthe User Preferences in the instance of Preferences.

Preferences pref = new Preferences();
pref= pmanager.getUserPreferences(requestorUserInfo);

5. Setthe new value for User Preferences.

int reportCount = 12;

String templateName = “Beach”;

String email = “hostUser@hostOrg.com”;
String defConnection = “MyConnection”;

pref.setReportCount(reportCount);
pref.setTemplateName (templateName);
pref.setShowRecentReports(true);
pref.setDefaultConnection(defConnection);
pref.setDefaultPortalTheme("Default");
pref.setEmail (email);
pref.setFormat(InteraConstants.ReportFormats.PDF);
pref.setPreflLanguage("EN_US");

6. Update these User Preferences
Method: updateUserPreferences
public Preferences updateUserPreferences
(Preferences userPref,

UserInfo userInfo)
throws PersonalizationHandlerException

This method updates the user preferences to the repository.

Parameters:

190

o UserPref: The user preferences prefernces details
e Userlnfo: userInfo object for authorization.

Returns:
Preferences

//Method used to update the user preferences to the repository
pmanager.updateUserPreferences(pref, requestorUserInfo);

191

5 Callback API

Call Back mechanism has three implementations.

1. Global Security Filtering
2. Authentication Check
3. Callback Events

Intellicus allows its customers to enable the security filtering of their report data. The filtering is typically on
the basis of any user credential attributes like User ID, Org ID etc. This allows Intellicus customers to show

only filtered records to a given user from their database.

The filtering is configured at organization level which enables the filtering on the data in the reports run by

the users of that organization.

If a user who belongs to that organization runs a report, Intellicus would either apply filtering it self or call

customer’s code depending on the configuration made.

This should be noted that during the report execution filtering is applied on all the relevant SQLs run, which
include Report SQLs, Crosstab or Chart SQLs, Parameter SQLs etc.

Intellicus allows its customers to apply user authentication check.

Intellicus provides support for calling back the client’s plug-in code impelemented for various types of

callback events for Report, Connection, UMM etc operations.

SQL Filter

Configuration

Security Filtering can be done in following two ways:

1. Intellicus: Using Intellicus, SQL filtering requires administrator to provide the filter column name
which must be present in the database tables entities as an attribute and depending on which
Intellicus would add a where clause in all the data fetching SQLs. (In the sample this column is
WORKSPACEID). This way, the SQl is replaced and records are filtered based on given attribute.

2. Callback: Intellicus supports callback SQL Filtering where Intellicus calls custom code to apply the
filtering on all the data fetching SQLs.

Sample Schema
Let’s assume there are 50 tables, in which 45 tables have a field to separate row data.

Tables: COMPANY, CUSTOMER, CONTACT.

192

All these tables have a column WORKSPACEID which is used to divide rows amongst users.
Common Tables: CITY, COUNTRY

These tables store generic data and doesn’t need filtering.

Configuring SQL Filtering Callback Options

Customer system administrator configures the callback SQL Filtering. For configuration the administrator

will go to organization screen where he/she enables callback SQL filtering.

Qrganization User/Role Access Rights User Mapping
Modify Organization
Q
General Advanced Preferences Data Restriction

Organization Name
w Created: 4 Max. Allow

Authentication Check is Performed by

1] Callbackorg © Intellicus @ Socket
S ©) External Application Server Port
HostOrg © Host Application

&l Intelica (Admin| @ Call Back Mechanism

O Java Class @ Native Library @ COoMDLL
Implementer|cum.AuthCaIIbacklmpl ‘

Test

e G prersoungs [|
Apply Security Filter @ Local © Socket O rmI
@ Intellicus Server Port

© Call Back Mechanism © Java Class © Native Library © COMDLL
Implementer |CallBack_SQLFiter |

Password Settings

Minimum Password Length |:| Password Never Expires

Reset Password on First Login Fassword Expires Day(s)

Figure 3: Callback SQL Filtering

Customer administrator enables security filtering and chooses Call Back Mechanism as the option between

Intellicus and Call Back Mechanism.

Using call back security filtering requires administrator to provide the following:

1. Filtering mode among Local, Socket or RMI
2. Implementer class name which is a Java, C, or COM Class.

Callback SQL Filtering
Code implements Intellicus Call back Filtering interface

If Intellicus SQL filtering is not what customer wants, Intellicus also supports call back SQL Filtering where

Intellicus calls customer’s code to apply the filtering on all the data fetching SQLs.

193

For Intellicus to call customers code customer will have to provide the implementation of the call back

interface exposed by Intellicus.
Intellicus supports call back using various technologies:

Local Java

e Implementer: Java Class
e Call Type: In Memory

You provide Java implementation of Intellicus sql filtering call back interface and Intellicus calls it at
runtime. The custom code library must be placed in Intellicus Report Server class path before starting the

server.

Local COM

e Implementer: COM DIl written in VB, VC++
e Call Type: NI COM call to DIL.

You provide a COM DLL implementation of the Intellicus SQL filtering call back COM interface. The report

Server should be running on a Windows Platform.

Remote Call back

e Implementer: COM DIl written in VB, VC++
e Call Type: TCP Call to DLL Invoker and JNI Call

You provide a COM DLL implementation of the Intellicus SQL Filtering Call back interface. The report Server

is running on non Windows Platform, thus can not support COM.

For the implementation of the interface Customer gets the interface from Intellicus.

Interface Details
For Java call back activities, Intellicus provides the interface in the form of a jar file, iCallback.jar.
The Jar contains the interface exposed by Intellicus, ISQLFilter.

Customer would implement the methods of the interface and provide the implementation class, normally,
in the form of a jar file. The jar would be deployed in the Intellicus Report Server class path for Report Server

to make the calls.

Equally, Intellicus provides IntellicusContext.dll for COM DLL implementation. The implementer COM DLL
should be appropriately registered with the windows registry.

1. Implement the interface ISQLFilter

public class CallBack tables implements ISQLFilter

194

2. Initialize the class instance using initGlobal().
public void initGlobal() throws Exception

{
System.out.println("---inside initGlobal()-------- ")

}

Call Sequence

Below are the methods of the call back filtering interface and the sequence in which they should be called:
Please refer to related Java doc for exact signature of the interface methods.

1) initGloball()

Set the credentials and other information (helps custom class to initiate config files and database

connections etc.).

2) int getFilterType()

Intellicus gets the filter type you want to implement:

Return Value =1 or FILTER_TYPE_SQL

Type: SQL

Complete SQL statement will be passed for manipulation by your code and collected back.
Method for filter call: getFilteredSQL()

Return Value =2 or FILTER_TYPE_TABLES

Type: TABLES

List of TABLES will be passed for manipulation by your code and collected back.

Method for filter call: getTablesFilters()

3) setOrgID(String orgID)

A series of setters are called for setting the context and credentials of the reporting user. Reporting user’s

Intellicus OrgiD.

4) setUserlID(String userlD)

Reporting user’s Intellicus UserID.

195

5) setPassword(String passwd)

Reporting user’s Intellicus Password.

6) setSessionID(String sessionID)

Reporting user’s Intellicus sessionID.

7) setSD(String sd)

Reporting user’s SecurityDescriptor. (Custom tag)

8) setCustomerlD(String customerID)

Reporting user’s Customer ID. (Custom tag)

9) setLocation(String location)

Reporting user’s Location ID. (Custom tag)

10) setLocale(String locale)

Reporting user’s Locale. (Custom tag)

11) setTimestamp(String timestamp)

Reporting request Time stamp (Custom tag)

12) setDBName(String dbName)

Get the filtered sql if filter type is SQL Filter Call

13) String getFilteredSQL(String sql)

Intellicus provides the original SQL to your code and gets the modified SQL back.

OR

196

13) String[] getTablesFilters(String[] Entities)

Intellicus provides the Entity names used in the SQL to your code and gets back the filters list to be replaced
at the place of those Entities or Implicit Views to replace the table names.

Note: Please refer sample code available at

<Intellicus_Install_Path>\SampleCodes\CallBack APIs\CallBack Filtering

Authentication Check

Configuring Authentication Check

System Administrator configures Intellicus Call Back Authentication check. Customer system administrator
configures the Intellicus call back authentication mechanism. For configuration the administrator will go to

organization screen where he/she selects the option for call back authentication check.

Figure 4: Callback Authentication Check

Administration > Manage Users » Orgam:atwn
Organization UserRole | Entity AccessRights | User Happing
@ Information saved successfully
= Q. M f Organization Name |Hust0rganizatiun Description |
Organization Name lz Default O Data Restriction
w dll organizations Authentication Check is Performed by
ffipemoorg O ntelicus @ Local O socket O rui
[fldsc ' External Application Server Port
FocusGr icati
Lo 2 Host Application Java Class © Native Library © com
ostOrganization Call Back Mechanizm
ik - lementer |Auth Callbackimpl |
Hintelica
ElLoaPorg Global Filter Settings
mlorg] Apply Security Filter
Intellicus Global Fitter Column Name l:l
Call Back Mechanizm User Attribute
lgnore if Not Prezent

Customer administrator selects the option of Call Back Mechanism for Authentication check.

Using call back authentication check requires administrator to provide the following:

1. Filtering mode among Local, Socket or RMI
2. Implementer class name which is a Java, C, or COM Class.

Callback Authentication Check

Your Code implements Intellicus Call back authentication interface.

197

If Intellicus authentication checks is not what customer wants, Intellicus also supports call back

authentication check where Intellicus calls customer’s code to apply the authentication check.

For Intellicus to call customers code customer will have to provide the implementation of the call back

interface exposed by Intellicus.
Intellicus supports call back using various technologies:

Local Java

e Implementer: Java Class
e Call Type: In Memory

You provide Java implementation of Intellicus authentication call back interface and Intellicus calls it at
runtime. The custom code library must be placed in Intellicus Report Server class path before starting the

server.

Local COM

e Implementer: COM DIl written in VB, VC++
e Call Type: JNI COM call to DIL.

You provide a COM DLL implementation of the Intellicus authentication call back COM interface. The report

Server should be running on a Windows Platform.

Remote Call back

e Implementer: COM DIl written in VB, VC++
e Call Type: TCP Call to DLL Invoker and JNI Call

You provide a COM DLL implementation of the Intellicus authentication Call back interface. The report

Server is running on non Windows Platform, thus can not support COM.

For the implementation of the interface Customer gets the interface from Intellicus.

Interface Details
For Java call back activities Intellicus provides the interface in the form of a jar file, iCallback.jar.
The Jar contains the interface exposed by Intellicus, IAuthenticate.

Customer would implement the methods of the interface and provide the implementation class, normally,
in the form of a jar file. The jar would be deployed in the Intellicus Report Server class path for Report Server

to make the calls.

Equally, Intellicus provides IntellicusContext.dll for COM DLL implementation. The implementer COM DLL

should be appropriately registered with the windows registry.

198

Sample Implementation Code

Steps:

1.

Impletment the interface IAuthenticate.

public class AuthCallbackImpl implements IAuthenticate

Initialize the class instance using initGlobal().

public void initGlobal() throws Exception
public boolean authenticate() throws Exception

{

System.out.println("calling authenticate() method");

//This is the JDBC url to connect to host application database.
String url = "jdbc:oracle:thin:@192.168.100.22:1521:test";

try{
//configuring the database.
Connection = DriverManager.getConnection(url, "scott",
"tiger");
if(connection==null){
System.out.println("failed to connect to database");
}
else{
ResultSet rs = null;
String passwordFromDB=null;
Statement stmt = connection.createStatement();
//The EMP_ID is set through the portal the userId
that is to be taken from the database.
rs = stmt.executeQuery("select EMP_ID,PASSWD from
EMP where EMP_ID ='"+this.userID+"'");
//The result set has the field PASSWD to be used as
//password,that is matched after then only user will
//be authenticated.
while(rs.next()){
//The password is also matched with the data
//present in the database.The password
//is also provided through the portal.
passwordFromDB=rs.getString("PASSWD") ;

System.out.println("Password:*"+passwdEnteredByUser+"*");
System.out.println("password from
database:*"+passwordFromDB+"*") ;
if(passwordFromDB.equals (passwdEnteredByUser))
{
System.out.println("user AUTHENTICATED");
return true;

199

Call Sequence

Below are the methods of the call back filtering interface and the sequence in which they should be called.
Please refer to related Java doc for exact signature of the interface methods.

1) initGloball()

Set the credentials and other information (helps custom class to initiate config files and database

connections etc.).

2) authenticate()

Authentication implementation will be in this method.

3) setOrgID(String orgID)

Aseries of setters are called for setting the context and credentials of the reporting user. Reporting user’s
Intellicus OrgiD.

4) setUserlID(String userlD)

Reporting user’s Intellicus UserID.

5) setPassword(String passwd)

Reporting user’s Intellicus Password.

6) setSessionID(String sessionID)

Reporting user’s Intellicus sessionID.

200

7) setSD(String sd)

Reporting user’s SecurityDescriptor. (Custom tag)

8) setCustomerlD(String customeriD)

Reporting user’s Customer ID. (Custom tag)

9) setLocation(String location)

Reporting user’s Location ID. (Custom tag)

10) setLocale(String locale)

Reporting user’s Locale. (Custom tag)

11) setTimestamp(String timestamp)

Reporting request Time stamp (Custom tag)

12) setDBName(String dbName)
Get the filtered sql if filter type is SQL.

Note: Please refer sample code available at

<Intellicus_Install_Path>\SampleCodes\CallBack APIs\CallBack Authentication

201

Callback Events

Intellicus supports ‘Callback Events’. This feature allows Intellicus to raise particular event on execution of a
specific task. The events raised are received by call back code. By receiving all these events users will be

able to perform all necessary actions according to their needs.

Java programmers can leverage their existing code by calling them from various Callback events thrown by

Intellicus.

For programming, Intellicus takes the compiled java code.

Intellicus publishes Interface classes in iCallback.jar

Implement the interface corresponding to the requested event type.

After compilation of its class and creating its Jar File, place it in the lib folder of ReportEngine i.e. <Intellicus
Installed Path>/ReportEngine/lib

Make entries of these class names in eventshandlers.xml placed in Config folder of ReportEngine. Intellicus

provides following types of Callback events and their methods:

ReportEvents
1. afterReportExecution
2. beforeReportExecution
3. beforeURLAssign
4. beforeParamsinitialization

Connection Events

1. beforeConnectionGet
2. afterConnectionGet
3. beforeConnectionSubmit

UMM Events

afterOrganizationCreate
afterRoleCreate
afterUserCreate
afterUserModify

W

ReportMgmtEvents

afterCategoryAdded
afterCategoryModify
afterCategoryDelete
afterReportAdded
afterReportModify

ANE SN o

202

6. afterReportDelete

ROMgmtEvents

1. afterReportObjectAdded
2. afterReportObjectModify
3. afterReportObjectDelete

General configuration

To configure an event,

1. You need to set value of EVENTSHANDLER TYPE tag. This tagis found in configuration file
<Intellicus install path>\ReportEngine\Config\ eventshandlers.xml.
2. The name of the IMPLEMENTOR class should be mentioned in the EVENTS configuration XML file.

For example, in case of Report Events,

<EVENTSHANDLERS>
<EVENTSHANDLER TYPE="REPORTEVENTS”>
<CALLBACK CALLTYPE="1">
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<VALUE>com.mypackage.myclass</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>
</ EVENTSHANDLER>
</ EVENTSHANDLERS>

For each type of callback event there would be one class and corresponding entry in the configuration XML.
eventshandlers.xml may contain multiple event handlers. Event Handler, if defined in configuration file

automatically performs initialization with default implementation.

Report Events

Intellicus provides an interface class "ReportEvents". This interface class enforces the below given methods
for various events. Intellicus integrator may write a java class to overwrite the default impelementaion of

one or more methods in this interface.

Configuration

For implementing Report Events, EVENTSHANDLER TYPE should be: REPORTEVENTS.

203

Following code shows the XML entry having configuration of Report Events.

<EVENTSHANDLER TYPE="REPORTEVENTS">
<CALLBACK CALLTYPE="1">
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<VALUE>com.mypackage.myclass</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>
</ EVENTSHANDLER>

During callback events process Intellicus Report Server will call these methods:

Object beforeReportExecution(): Gather the callback event information before the execution of a Report

from the java class using HashMap as object.

void afterReportExecution(Object eventinfo): Provide the callback event Infomation after the execution of a

Report to the java class using HashMap as object.

Object beforeURLAssign(Object eventInfo): Provide the callback event Infomation before the execution of a
URL to the java class using HashMap as object and will gather the modified URL from the java class using

HashMap as object.

void beforeParamsinitialization(Object eventinfo): Provide the callback event Infomation before the
initialization of Parameters while running Report. It basically provides a mechanism of doing some pre-

processing on the parameters.

Sample Implementation code

import com.impetus.interaj.callback.ReportEvents;
public class SampleReportEventHandlerWithImpl extends ReportEvents{
/* Default Constructor. */
public SampleReportEventHandlerWithImpl () throws Exception
{
}

BEFORE REPORT EXECUTION

To get the details from user before report gets executed. This event will be triggered just before the

execution of Report in Intellicus.

The following methods of the class will be called in this event.

204

Object beforeReportExecution()

This method returns an Object which is generally a HashMap object that stores as a key, String that specify

the property and as a value, a String that specifies the customizations on that property. The HashMap can

have the following fields:

CONNECTION NAME => Name of the connection.

If a connection object is needed, then provide the name of the connection as a string.

The method should return a HashMap of information as Java class object.

The HashMap is scanned for these key-values.

Event Info Hash Map

Key

Value

CONNECTION_NAME

If you need a connection object other than the connection used to execute

the report, then provide the name of the connection as a string.

If this key doesn’t exist or it is blank, then the connection used for executing
the report will be provided in setEventinfo call.

OPERATION_TYPE

The operation performed on the report.

SAVE = Report was requested for saving by Ul or by scheduler. In this case,
SAVED_OUTPUT_ID is also available in this HashMap for future use.

EXEC = The report was requested for viewing on the Ul. In this case,
SAVE_OUTPUT_ID will be blank or null.

PRINT = The report was requested for printing on the Ul or on the server
side. In this case, SAVE_OUTPUT_ID will be blank or null.

USER_INFO

Hash Map of USER_INFO.
HashMap userinfo = (HashMap)

eventInfo.get(“USER_INFO”) ;
String appID =

(String)userinfo.get (“USER_ID");

205

Refer to USER_INFO table below for values inside this HashMap.

SYS_PARAMS Hash Map of all System Parameters passed to the Report.

KEY of each element is the name of the system parameter name and VALUE

is the string of parameter value.

USER_PARAMS Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the string of

parameter value.

beforeReportExecution
public Object beforeReportExecution() throws Exception

{

return new HashMap();

}

Place the logical code in above method.

AFTER REPORT EXECUTION

To set the details after report get executed. . This event is triggered after Report Execution.
The following method of the class will be called in this event.

void afterReportExecution(Object eventinfo)

This method is to provide the information related to the report execution to the callback class. It takes an
Object eventinfo as parameter which is generally a HashMap object that store as a key, String that specify

the property and as a value, a String or HashMap that specifies the customizations on that property.

The Hash Map has either strings or Hash Maps in turn as values. The keys in the hash maps are the key words

mentioned below or parameters passed to the report.

The HashMap contains following values.

206

Key

Value

REPORT_ID: String

The REPORT_ID of the executed report. For example:
String reportID =

(String) eventinfo.get (“REPORT_ID”);

CATEGORY_ID: String

The CATEGORY_ID of the executed report.

REPORT_OID: String

The REPORT_OID (Report output ID) of the executed report.

SAVED_OUTPUT_ID: String

The output id of saved report.

Useful for referencing a saved report for Viewing.

TIME_SPENT:

Time spent in execution of report in milliseconds.

OUTPUT_TIME:

Time stamp of execution completion in Java time stamp milliseconds.

FORMAT: String

Output format requested such as PDF, HTM etc. The saved report can

further be viewed in any other format irrespective to this format.

USER_INFO

Hash Map of USER_INFO.
HashMap userinfo = (HashMap)
eventinfo.get(“USER_INFO”) ;
String appID =
(String)userinfo.get (“USER_ID”);

Refer to USER_INFO table below for values inside this HashMap.

PARAMS_INFO

Hash Map of PARAMS_INFO. Refer to PARAMS_INFO table below.

207

Key

Value

CONNECTION

Java.sql.connection class object :

The connection, which was used to execute the report or requested in the

getEventinfo call.

The connection is in opened state and you have to keep it in the same
state by end of the call.

This connection is provided from the connection pool of Intellicus

database connections.

OPERATION_TYPE

The operation performed on the report.

SAVE = Report was requested for saving by Ul or by scheduler. In this case,
SAVED_OUTPUT_ID is also available in this HashMap for future use.

EXEC = The report was requested for viewing on the Ul. In this case,
SAVE_OUTPUT_ID will be blank or null.

PRINT = The report was requested for printing on the Ul or on the server
side. In this case, SAVE_OUTPUT_ID will be blank or null.

ERROR_CODE

NULL or Blank if no error occurred.

Contains the error code / number if any error occurs in the execution of

the report.

ERROR_MESSAGE

Error message if any error occurs.

ERROR_ROOT_CAUSE

Descriptive error message in case an error occurred.

SYS_PARAMS

Hash-Map of all System Parameters passed to the Report.

KEY of each element is the name of the system parameter name and

VALUE is the string of parameter value.

USER_PARAMS

Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the string of

parameter value.

208

afterReportExecution

Place the logical code in above method.

BEFORE URL ASSIGN

To get the modified URL. This event will be triggered if the report has hyper-link set for any of its

corresponding column.

Passed URL can be:

e Absolute URL
e DrillDown Report.

The following method of the class will be called in this event.

Object beforeURLAssign(Object eventinfo)

This method is used by the Intellicus Report Server to provide a mechanism of doing some pre-processing
on the URL being embedded within the report.

This method is to provide the information related to the report execution to the callback class. It takes an
Object eventinfo as parameter which is generally a HashMap object that store as a key, String that specify
the property and as a value, a String or HashMap that specifies the customizations on that property.

209

The HashMap contains following values.

Key

Value

URL: String

The drilldown URL

REPORT_ID: String

The REPORT_ID of the executed report. Foreg.
String reportID =

(String) eventInfo.get (“REPORT_ID”);

CATEGORY_ID: String

The CATEGORY_ID of the executed report.

REPORT_OID: String

The REPORT_OID (Report output ID) of the executed report.

SAVED_OUTPUT_ID:
String

The output id of saved report. Useful for referencing a saved report for

Viewing.

FORMAT: String

String: Output format requested such as PDF , HTM etc. The saved report can

further be viewed in any other format irrespective to this format.

TIME_SPENT: long

Time spent in execution of report in milliseconds.

OUTPUT_TIME: long

Time stamp of execution completion in Java time stamp milliseconds.

Hash Map of USER_INFO.

HashMap userinfo = (HashMap)

USER_INFO eventinfo.get(“USER_INFO”) ;
String appID =
(String)userinfo.get (“USER_ID”);
Refer to USER_INFO table below for values inside this HashMap.
PARAMS_INFO Hash Map of PARAMS_INFO.

Refer to PARAMS_INFO table below.

OPERATION_TYPE

The operation performed on the report.

210

Key

Value

SAVE = Report was requested for saving by Ul or by scheduler. In this case
SAVED_OUTPUT_ID is also available in this HashMap for future use.

EXEC = The report was requested for viewing on the Ul. In this case,
SAVE_OUTPUT_ID will be blank or null.

PRINT = The report was requested for printing on the Ul or on the server
side. In this case, SAVE_OUTPUT_ID will be blank or null.

)

User Info Hash Map

Key Value

USER_ID USER ID passed to Report Server for execution of report.
PASSWORD Password passed to Report Server for execution of report.
ORG_ID ORGID passed to Report Server for execution of report.
SESSION_ID Session id.

SECURITY_DESCRIPTOR

Security Descriptor string.

CUSTOMER_ID Customer id, for Service Provider deployments.
LOCATION Location.

LOCALE Locale setting of browser.

TIME_STAMP Time of request in Java time stamp milliseconds.
DB_NAME Data base name.

ROLES Roles granted to the user.

CONNECTION_NAME

Connection name requested to use for the report.

211

Params Info Hash Map

Key

Value

SYS_PARAMS

Hash Map of all System Parameters passed to the Report.

KEY of each element is the name of the system parameter name and VALUE is

the string of parameter value.

USER_PARAMS

Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the string of parameter

value.

This code will be called for all those reports having Hyper-link set corresponding in its column. To modify

the URL only for specific Reports, implementation code needs to be modified as per requirement.

beforeURLAssign

public Object beforeURLAssign(Object eventInfoMap)

{

//This HashMap will return an assigned URL
String url = (String) ((HashMap)eventInfoMap).get("URL");
//This HashMap will return a UserInfo HashMap which contains
user_id and password of Logged in User.
HashMap userInfo = (HashMap) ((HashMap)eventInfoMap).get("USER INF0");
//Get User id from userInfo hashMap by passing USER ID key.
//This is when the passed URL is for drilldown to any
Intellicus report.
if(url.contains ("DRILLDOWN")){
//Write your Custom code in case of drill down Reports
}
//This is when the passed URL is an absolute URL.
else{
//Url String contains URL:~TARGET=0:SRC= additional value
in a URL.
//Below line of code is used to get Initial prefix of URL.
String initialUR1Prefix =

url.substring(0,url.index0f ("SRC=")+"SRC=".1length());
//Below line of code is used to get orginal URL.
String originalURL =
url.substring(url.index0f ("SRC=")+"SRC=".1length());
//Below condition check wheter given url contains any

parameter or not.

212

//Custom code to get modified url

originalURL = getURL(originalURL);

//Append intial prefix of URL and original Url to form a new
URL.

url = initialUR1Prefix + originalURL;

}
//create a HashMap Object

HashMap hmapModifiedURL = new HashMap();
//put modified url in a created HashMap
hmapModifiedURL.put("URL", url);

//Return above HashMap to calling function.
return hmapModifiedURL;

When the passed URL is for drilldown to any Intellicus report.

if(url.contains ("DRILLDOWN")){
//Write your Custom code here

}

When the passed URL is an absolute URL.

elseq{
//Write your Custom code here

}

Place the logical code in above method

BEFORE PARAMETERS INITIALIZATION

This method is used by Intellicus Report Server to provide a mechanism of doing some pre-processing on

the User Parameters.
The following method of the class will be called in this event.

public void beforeParamsInitialization(java.lang.0Object eventInfo)
throws java.lang.Exception

This method takes a HashMap Object eventinfo that store as a key, String that specify the property and as a

value, a String that specifies the customizations on that property. The HashMap contains following values.

The HashMap contains following values.

Key Value

OPERATION_TYPE: String The operation performed on the report like SAVE,EXEC,PRINT etc.

213

Key Value

OUTPUT_TIME: long Time stamp of execution completion in Java time stamp
milliseconds.
USER_INFO Hash Map of USER_INFO.

HashMap userinfo = (HashMap)
eventinfo.get(“USER_INFO”) ;
String appID =
(String)userinfo.get (“USER_ID”);

Refer to USER_INFO table below for values inside this HashMap.

USER_PARAMS: HashMap Hash Map of all user parameters passed to the report. KEY of each
element is the parameter name and VALUE is the string of parameter

value.

214

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SECURITY_DESC
RIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIME_STAMP

Time of request in Java time stamp milliseconds.

USERINFO_DB_NAME

Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_N
AME

Connection name requested to use for the report.

This code will be called to provide a mechanism of doing some pre-processing on the parameters

beforeURLAssign

public Object beforeParamsInitialization(Object eventInfo)

{

//The HashMap contains following values.

// 1)

// 2)

// 3)
following values.
// 4)

to the report.

OPERATION TYPE String => The operation performed on the report
like SAVE,EXEC,PRINT etc

OUTPUT TIME long => Time stamp of execution completion in Java
time stamp milliseconds.

USER INFO HashMap => Hash Map of USER INFO which contains

USER PARAMS HashMap => Hash Map of all user parameters passed

215

// KEY of each element is the parameter name and VALUE is the
string of parameter value.
HashMap paramsInfoMap = (HashMap) eventInfo;

//Get USER PARAMS HashMap
HashMap userParamsMap = (HashMap) paramsInfoMap.get("USER PARAMS");
System.out.println(userParamsMap.keySet());

//Here sample code assumes that USER PARAMS hashmap contains 2 user parameter with
name START TIME & END TIME
//which host application wants to update before Params Initialization

//Get START TIME, a sample user parameter, from userParamsMap
String StartParam = (String)userParamsMap.get("START TIME");
//If StartParam is not null then update START TIME
if(StartParam !'= null) {
// Update START TIME in userParamsMap
// Here host application will replace START TIME parameter with actual
time after proper calculation
userParamsMap.put ("“START TIME", new Date().toString());
System.out.println("Parameter START TIME found");
}

//Get END TIME, a sample user parameter,user parameter from userParamsMap
String EndParam = (String)userParamsMap.get("END TIME");
//If EndParam is not null then update END TIME
if (EndParam !'= null) {
// Update END TIME in userParamsMap
// Here host application will replace END TIME parameter with actual
time after proper calculation
userParamsMap.put("END TIME", new Date().toString());
System.out.println("Parameter END TIME found");

Place the logical code in above method

216

User Mapping

Application user needs to be mapped with Intellicus user.

Administration = Manage Users » User Mapping
Organization User/Role Entity Access Rights User Mapping

@ Information zaved successfully

Intellicus User(z) Application User(z) ’?

=E O < Tomes E

Name |

v[ﬂl Organizations

iHostOrganization
™ Usert

b EELDAPOrg
b sflorgt

Figure 5: User Mapping

Connection Events

Intellicus provides a class "ConnectionEvents". This class provides the below given methods. Intellicus

integrator has to write a java class, which must extend this class for Intellicus to call a sequence of methods.

Configuration
For implementing Connection Events, EVENTSHANDLER TYPE should be: CONNECTIONEVENTS.
Following code shows the XML entry having configuration of Connection Events.

<EVENTSHANDLER TYPE=" CONNECTIONEVENTS”>
<CALLBACK CALLTYPE="1">
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<VALUE>com.mypackage.myclass</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>
</ EVENTSHANDLER>

During callback events process Intellicus Report Server will call these methods:

Object beforeConnectionGet(Object conninfo): Get callback event information before the connection of any
operation is being get from the connection pool. Gather these information from the java class using

HashMap as object.

217

1. Object afterConnectionGet(Object conninfo): Set the callback event Infomation after the
connection of any operation is being get from connection pool Provide these information to the
java class using HashMap as object.

2. Object beforeConnectionSubmit(Object conninfo): Get callback event information before the
connection of any operation is being submitted back to the connection pool. Gather these
information from the java class using HashMap as object.

Sample Implementation code

import com.impetus.interaj.callback.ConnectionEvents;
public class SampleConnectionCallbackEvent extends ConnectionEvents {

}

BEFORE CONNECTION GET

To get the Connection Name along with other parameters before a connection is get from connection
pool.

The following method of the class will be called in this event.

Object beforeConnectionGet(Object conninfo)

Intellicus call backs an event before getting a connection from connection pool. There might be situation
that clients want to change connection on which a particular operation is to be performed. So here Intellicus
first raises an event (i.e. beforeConnectionGet) before getting a connection from connection pool. It
provides the connection name in the callback code. The callback code may change the connection name for
particular operation. Intellicus should receive the updated connection name and should also use the

updated connection for the execution of an operation.
This callback event executes each time Intellicus tries to get a connection from Connection Pool.
This callback event happens for non-repository connections only.

This event can be raised for the execution of following components.

e Chart Execution

e Crosstab Execution

e Main Report Execution
e Sub Report Execution

218

Event Info Hash Map

Key

Value

CONNECTION_NAME

Name of a Connection.

OBJECT_TYPE

Operation is performed for which type of object: Chart, Crosstab etc.

OBJECT_ID

Object Id.

IS_DEFAULT

Connection is default or not.

IS_REPOSITORY

Connection is repository connection or not.

USER_INFO Hash Map of USER_INFO.
Refer to USER_INFO table below for values inside this HashMap.
SYS_PARAMS Hash Map of all System Parameters passed to the Report.

KEY of each element is the name of the system parameter name and VALUE

is the string of parameter value.

USER_PARAMS

Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the string of

parameter value.

beforeConnectionGet

public Object beforeConnectionGet(Object beforeConnInfo){

String
String

String

System.
System.
System.

return

conName =
(String) ((HashMap)beforeConnInfo).get ("CONNECTION NAME");
isDefault =
(String) ((HashMap)beforeConnInfo).get("IS DEFAULT");
isRepository =

(String) ((HashMap)beforeConnInfo).get("IS REPOSITORY");
out.println("Connection Name : "+conName) ;
out.println("Is Connection Default : "+isDefault);
out.println("Is Connection Repository : "+isRepository);
beforeConnInfo;

Place the logical code in above method.

219

AFTER CONNECTION GET

To get the Connection Details if connections get successfully from the connection pool.

The following method of the class will be called in this event.

Object afterConnectionGet(Object connlinfo)

Intellicus can callback an event when it gets any connection from a connection pool. Intellicus Application

supports pooling of data sources connections. A connection is acquired at the time of report

execution/Chart Query Execution/Cross tab Query Execution/Sub Report Query Execution etc. A client may

want to change some data source property while getting the connection. So Intellicus can callback an event

(i.e. afterConnectionGet) on a callback instance whenever a connection is acquired from the pool. It can also

provide the connection object to the callback event. The call back code may change Connection Properties

so that Intellicus receives the updated connection object to use further.

e This callback event executes each time a connection is acquired.
e This call back happens for non-repository connections only.
e This event is raised for the execution of following components.

Chart Execution
Crosstab Execution
Main Report Execution
Sub Report Execution

Event Info Hash Map

Key Value

CONNECTION Entire java.sql.connection object.
CONNECTION_NAME Name of a Connection.
IS_DEFAULT Connection is default or not.

IS_REPOSITORY

Connection is repository connection or not.

USER_INFO

Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

220

Key

Value

SYS_PARAMS

Hash Map of all System Parameters passed to the Report.

KEY of each element is the name of the system parameter name and VALUE

is the string of parameter value.

USER_PARAMS

Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the string of

parameter value.

afterConnectionGet

public Object afterConnectionGet(Object afterConnInfo){

Connection c =
(Connection) ((HashMap)afterConnInfo).get("CONNECTION");
System.out.println("Connection "+c.toString());

String conName =

(String) ((HashMap)afterConnInfo).get("CONNECTION NAME");

String orgld

String isDefault =
(String) ((HashMap)afterConnInfo).get("IS DEFAULT");

String isRepository =

(String) ((HashMap)afterConnInfo).get("IS REPOSITORY");
HashMap userDetail =

(HashMap) ((HashMap)afterConnInfo).get("USER INFO");
String userId =

(String) ((HashMap)userDetail) .get ("USERINFO USERID");

= String) ((HashMap)userDetail).get ("USERINFO_ORGID");

System.out.println("Conn Name : "+conName);
System.out.println("Is Conn Default : "+isDefault);
System.out.println("Is Conn Repository : "+isRepository);
System.out.println("User Id : "+userId);
System.out.println("Org Id : "+orgld);

return afterConnInfo;

Place the logical code in above method.

BEFORE CONNECTION SUBMIT

To get the Connection Details before connection is submitted back to the connection pool.

The following method of the class will be called in this event.

221

Object beforeConnectionSubmit(Object conninfo)

Intellicus supports callback event for the operation of submitting any connection back to connection pool.
As Intellicus gives access to set some properties while getting any connection from connection pool, so
clients may need to reset those properties that are being set at the time of connection retrieval. Intellicus
raises a callback event (i.e. beforeConnectionSubmit) on a callback instance. It also provides the connection
object to the callback event. So in the call back code clients may reset Connection Properties. And Intellicus

should receive the updated connection object from callback code of client.

e This call back event executes each time a connection is submitted back to connection pool.
e This call back happens for non-repository connections only.
e This event can be raised for the execution of following components.

e Chart Execution

e Crosstab Execution

e Main Report Execution

e Sub Report Execution

Event Info Hash Map

Key Value

CONNECTION Entire java.sql.connection object.
PROVIDER Database Provider.
CONNECTION_NAME Name of a Connection.
REPORT_ID Report Id.

REPORT_NAME Report Name.

CATEGORY_ID Category Id.

CATEGORY_NAME Category Name.

OBJECT_TYPE Operation is performed for which type of object: Chart, Crosstab etc.
OBJECT_ID Object Id.

USER_PARAMS User parameters.

222

IS_DEFAULT Connection is default or not.

IS_REPOSITORY Connection is repository connection or not.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

USER INFO HASH MAP

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

beforeConnectionSubmit

public Object beforeConnectionSubmit(Object beforeConnInfo){

223

String conName =

(String) ((HashMap)beforeConnInfo).get ("CONNECTION NAME");
String isDefault =
(String) ((HashMap)beforeConnInfo).get("IS DEFAULT");

String isRepository =

(String) ((HashMap)beforeConnInfo).get("IS REPOSITORY");
HashMap userDetail =

(HashMap) ((HashMap)beforeConnInfo).get("USER INF0");
String userId =

(String) ((HashMap)userDetail) .get ("USERINFO USERID");
String orgld =

(String) ((HashMap)userDetail) .get ("USERINFO ORGID");

System.out.println("Conn Name : "+conName);
System.out.println("Is Conn Default : "+isDefault);
System.out.println("Is Conn Repository : "+isRepository);
System.out.println("User Id : "+userId);
System.out.println("Org Id : "+orgId);

return beforeConnInfo;

}

Place the logical code in above method.

UMM Events

Intellicus facilitates callback events mechanism for User Management. These events will be triggered whne
any User management activity like, User creation, Role creation, Organization creation or User modification

takes place.

Configuration
For implementing UMM Events, EVENTSHANDLER TYPE should be: UMMEVENTS.
Following code shows the XML entry having configuration of UMM Events.

<EVENTSHANDLER TYPE="UMMEVENTS">
<CALLBACK CALLTYPE="1">
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<VALUE>com.mypackage.myclass</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>
</ EVENTSHANDLER>

224

During callback events process Intellicus Report Server will call these methods:

1. void afterOrganizationCreate(Object orglnfo): Provide the callback event Infomation after the new
Organization is created. Provide these information to the java class using HashMap as object.

2. void afterRoleCreate(Object rolelnfo): Provide the callback event Infomation after the new Role is
created. Provide this information to the java class using HashMap as object.

3. void beforeUserCreate(Object userinfo): Provide the callback event Infomation before the new User
is created. Provide these information to the java class using HashMap as object.

4. void afterUserCreate(Object userlnfo): Provide the callback event Infomation after the new User is
created. Provide this information to the java class using HashMap as object.

5. void beforeUserModify(Object userlnfo): Provide the callback event Infomation before any User is
modified. Provide these information to the java class using HashMap as object.

6. void afterUserModify(Object userModInfo): Provide the callback event Infomation after the existing
User is modified. Provide this information to the java class using HashMap as object.

Sample Implementation code

import com.impetus.interaj.callback.UMMEvents;
public class SampleUMMCallbackEvent extends UMMvents {
}

AFTER ORGANIZATION CREATE

To get the Organization details when new organization is being added to Intellicus. This event is
triggered After Organization is created.

The following method of the class will be called in this event.

void afterOrganizationCreate(Object orginfo)

Intellicus supports callback event for new organization creation in Application. In Intellicus, users are
allowed to create new organization. So at the time new organization is created, Intellicus raises a callback
event (i.e. afterOrganizationCreate) on the call back instance. It also provides the organization related

information to the callback event. So at the callback code clients may view all organization properties.

This callback event executes each time a new organization is being created in Intellicus.

225

Event Info Hash Map

Key Value
ORGANIZATION_ID Organization Id.
USER_INFO Hash Map of USER_INFO.
Refer to USER_INFO table below for values inside this HashMap.

USER_INFO Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

226

afterOranizationCreate

public void afterOrganizationCreate(Object orgInfo){
String orgld =
(String) ((HashMap)orgInfo) .get("ORGANIZATION ID");
System.out.println("Organization Id : "+orgId);

HashMap userDetail = (HashMap)
((HashMap)orgInfo).get("USER _INFQO");
System.out.println("User Id :
"+userDetail.get ("USERINFO USERID"));

System.out.println("Organization Id :
"+userDetail.get ("USERINFO ORGID"));

Place the logical code in above method.

AFTER ROLE CREATE

To get Role details when new Role is being added to Intellicus. This event is triggered after new role is

created.

The following method of the class will be called in this event.

void afterRoleCreate(Object rolelnfo)

Intellicus supports callback event for new role creation in Application. In Intellicus, users are allowed to
create new roles. So at the time new role is created, Intellicus raises a callback event (i.e. afterRoleCreate)
on a callback instance. It also provides the Role related information to the callback event. So at the callback

code clients may view all Role related properties.

This callback event executes each time, a new Role is being created in Intellicus.

Event Info Hash Map

Key Value
ROLE_ID Role Id.
ORGANIZATION_ID Organization Id in which role is being added.

227

USER INFO HASHMAP

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterRoleCreate

public void afterRoleCreate(Object roleInfo){

String
String orgld =

(String) ((HashMap)roleInfo) .get("ORGANIZATION ID");
rStatus= (String) ((HashMap)roleInfo).get("ROLE STATUS");
rAdmin =(String) ((HashMap)roleInfo).get("ROLE ADMIN");

String
String

roleId = (String) ((HashMap)roleInfo).get("ROLE ID");

String sysPriveleges =
(String) ((HashMap)roleInfo) .get("SYSTEM PRIVILEGES");

System.out.println("Role -- Role Id"+roleld);
System.out.println("Role -- Organization Id"+orgId);
System.out.println("Role -- Role Status"+ rStatus);
System.out.println("Role -- Role Admin"+ rAdmin);
System.out.println("Role -- System Priveleges"+sysPriveleges);

228

Place the logical code in above method.

BEFORE USER CREATE

User details when new User is being added to Intellicus. This event is triggered just before the new User is

created.

The following method of the class will be called in this event.

void beforeUserCreate(Object userinfo)

Intellicus supports callback event for new user creation in Application. In Intellicus Admins /Super Admins
are allowed to create new users. So at the time new user is created, Intellicus raises a callback event (i.e.
beforeUserCreate) on the call back instance. It also provides the User related information i.e. User ID and

Passowrd to the callback event.

This callback event executes each time before a new User is being created in Intellicus.

Userlnfo Hash Map

Key Value

USER_ID UserId.

PASSWORD User Password.
beforeUserCreate

//This method will be used to view User Information in callback code.

//This event will be raised each time before a User is created.

public void beforeUserCreate(Object userInfo){
System.out.println("inside beforeUserCreate()............... ")
String userId = (String) ((HashMap)userInfo).get("USER ID");
String password = (String) ((HashMap)userInfo).get("PASSWORD");
System.out.println("User Id---"+userId);
System.out.println("Passowrd ---"+password);

Place the logical code in above method.

229

AFTER USER CREATE
User details when new User is being added to Intellicus. This event is triggered just after new User is created.

The following method of the class will be called in this event.

void afterUserCreate(Object userinfo)

Intellicus supports callback event for new user creation in Application. In Intellicus Admins /Super Admins

are allowed to create new users. So at the time new user is created, Intellicus raises a callback event (i.e.

afterUserCreate) on the call back instance. It also provides the User related information to the callback

event. So in the call back code clients may view all User related properties or various privileges assigned to

user.

This callback event executes each time a new User is being created in Intellicus.

Event Info Hash Map

Key Value
USER_ID UserId.
DESCRIPTION User Description.

USER_STATUS

User Status, Whether the User is Active or suspended.

ORGANIZATION_ID

Organization Id in which User is being added.

PASSWORD

User Password.

IS_FIRST_LOGIN

Is user login for the first time or not?

IS_BALNK_PASSWORD

Is the password blank or not.

PWD_LAST_CHANGED

Date when password changed last time.

IS_SUPER_ADMIN

Is the user is Super Admin or not.

IS_ADMIN

Is the User is Admin or not.

SYSTEM_PRIVILEGES

System Privileges assigned to user.

230

USER_PREFERENCES Hash Map of User Preferences set for the user. Refer to
USER_PREFERENCES table below for values inside this HashMap.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

USER PREFERENCES HASHMAP

Key Value

DEFAULT_FORMAT Default Format set for the user.

LANG Default Language set for the user.

THEME Default Theme set for the user.
DEFAULT_DASHBOARD Default Dashboard set for the user.
SHOW_RECENT_REPORTS Whether Recent Reports to be shown or not.
SHOW_RECENT_REP_PUBLISHED Whether Recent Published Reports to be shown or not.
REPORT_CACHE_SIZE Report Cache Size.

EMAIL Email Id of the newly added user.

APPID Id of the user who is setting user preferences.

ORGID Organization Id of the user who is setting user preferences.
DEFAULT_CONNECTION Default Connection set for the user.
RUNTIME_USER_ID Runtime User Id of the user.

RUNTIME_PASSWORD Runtime Password of the user.

TEMPLATE_NAME Template name set for the user.

231

USE_EMAIL_FOR

Returns ENUMS values for which

Email has to be sent.

(0=WORKFLOW_APPROVAL, 1=ASYNCHRONOUS_REPORT_

COMPLETION, 2=MEMORY_TRIGGER, 3=EXEC_REJECT)

USER INFO HASHMAP

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

232

afterUserCreate

public void afterUserCreate(Object userInfo){
System.out.println("inside afterUserCreate()................ ");

String userId = (String) ((HashMap)userInfo).get("USER ID");
String orgld = (String) ((HashMap)userInfo).get

("ORGANIZATION ID");
String userStatus = (String) ((HashMap)userInfo).get

("USER STATUS");

String isSuperAdmin = (String) ((HashMap)userInfo).get

("IS SUPER_ADMIN");
String isAdmin = (String) ((HashMap)userInfo).get("IS ADMIN");

HashMap userPref (HashMap) ((HashMap)userInfo).get

("USER PREFERENCES");

String defFormat (String) ((HashMap)userPref) .get
("DEFAULT FORMAT");

String lang = (String) ((HashMap)userPref).get("LANG");
String theme = (String) ((HashMap)userPref).get("THEME");
String templateName = (String) ((HashMap)userPref).get

("TEMPLATE_NAME");
(String) ((HashMap)userPref) .get

("REPORT CACHE_SIZE");
(String) ((HashMap)userPref) .get

("DEFAULT DASHBOARD") ;
System.out.println("User Id---"+userId);
System.out.println("Org Id---"+orgId);
System.out.println("User Status---"+userStatus);
System.out.println("Is Super Admin---"+isSuperAdmin);
System.out.println("Is Admin---"+isAdmin);
System.out.println("defFormat---"+defFormat);
System.out.println("language---"+lang);

String repCacheSize

String defDashboard

System.out.println("Theme---"+theme);
System.out.println("Template Name---"+templateName);
System.out.println("Report Cache Size---"+repCacheSize);
System.out.println("Default Dashboard ---"+defDashboard);

Place the logical code in above method.

BEFORE USER MODIFY

User details when existing User is being modified in Intellicus. This event is triggered just before modifying
the User details.

The following method of the class will be called in this event.

233

void beforeUserModify(Object userinfo)

Whenever any existing user is modified in Intellicus, in the call back code, clients will get the details of the
user getting modified. User details will be available in call back as UserInfo parameter which is a hashmap

that contains User Information.

The HashMap contains following values.

Key Value

USER_ID UserId.

PASSWORD User Password.

PWD_LAST_CHANGED Date when password changed last time.

IS_UPDATE_PASSWORD True if password is changed.
beforeUserModify

//This method will be used to view User Information in callback code.
//This event will be raised each time before any existing User is modified.
public void beforeUserModify(Object userInfo){
System.out.println("inside beforeUserModify()......... ")
String userId= (String) ((HashMap)userInfo).get("USER ID");
String password= (String) ((HashMap)userInfo).get("PASSWORD") ;
String date=(String)
((HashMap)userInfo).get("PWD LAST CHANGED");
String isPsswordUpdated =
(String) ((HashMap)userInfo).get("IS UPDATE PASSWORD");

System.out.println("User Id---"+userId);

System.out.println("Passowrd ---"+password);
System.out.println("Passowrd Changed ---"+isPsswordUpdated);
System.out.println("Password Last Changed ---"+date);

Place the logical code in above method.

AFTER USER MODIFY

User details when existing User is being modified in Intellicus. This event is triggered just after modifying the
User details.

The following method of the class will be called in this event.

234

void afterUserModify(Object userinfo)

Whenever any existing user is modified in Intellicus, in the call back code, clients will get all the details of the

user modified. User details will be available in call back.

Key Value

USER_ID User Id.

DESCRIPTION User Description.

USER_STATUS User Status, Whether the User is Active or suspended.

ORGANIZATION_ID Organization Id of the modified user.

PASSWORD User Password.

IS_FIRST_LOGIN Is user login for the first time or not?

IS_BALNK_PASSWORD Is the password blank or not.

PWD_LAST_CHANGED Date when password changed last time.

IS_SUPER_ADMIN Is the user is Super Admin or not.

IS_ADMIN Is the User is Admin or not.

SYSTEM_PRIVILEGES System Privileges assigned to user.

USER_PREFERENCES Hash Map of User Preferences set for the user. Refer to
USER_PREFERENCES table below for values inside this HashMap.

USER_INFO Hash Map of USER_INFO.
Refer to USER_INFO table below for values inside this HashMap.

235

USER PREFERENCES HASHMAP

Key

Value

DEFAULT_FORMAT

Default Format set for the user.

LANG

Default Language set for the user.

THEME

Default Theme set for the user.

DEFAULT_DASHBOARD

Default Dashboard set for the user.

SHOW_RECENT_REPORTS

Whether Recent Reports to be shown or not.

SHOW_RECENT_REP_PUBLISHED

Whether Recent Published Reports to be shown or not.

REPORT_CACHE_SIZE

Report Cache Size.

EMAIL Email Id of a user.
APPID Id of the user who is setting user preferences.
ORGID Organization id of the user who is setting user preferences.

DEFAULT_CONNECTION

Default Connection set for the user.

RUNTIME_USER_ID

Runtime User Id of the user.

RUNTIME_PASSWORD

Runtime Password of the user.

TEMPLATE_NAME

Template name set for the user.

USE_EMAIL_FOR

Returns ENUMS values for which
Email has to be sent.
(0=WORKFLOW_APPROVAL, 1=ASYNCHRONOUS_REPORT_

COMPLETION, 2=MEMORY_TRIGGER, 3=EXEC_REJECT)

236

USER INFO HASHMAP

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterUserModify

public void afterUserModify(Object modUserInfo)

{

System.o
String
String

userld =
orgld =

String

String

out.println("Inside after User Modified()
(String) ((HashMap)modUserInfo).get("USER ID")
(String) ((HashMap)modUserInfo) .get

userStatus

isSuperAdmin =

("ORGANIZATION ID");
= (String) ((HashMap)modUserInfo).get
("USER _STATUS");
(String) ((HashMap)modUserInfo).get
("IS SUPER_ADMIN");

String isAdmin= (String) ((HashMap)modUserInfo).get("IS ADMIN");

HashMap userPref=(HashMap) ((HashMap)modUserInfo).get

("USER_PREFERENCES") ;

237

String defFormat = (String) ((HashMap)userPref).get
("DEFAULT_ FORMAT");

String lang = (String) ((HashMap)userPref).get("LANG");
String theme = (String) ((HashMap)userPref).get("THEME");
String templateName = (String) ((HashMap)userPref).get

("TEMPLATE NAME");
(String) ((HashMap)userPref) .get

("REPORT CACHE SIZE");
(String) ((HashMap)userPref) .get

("DEFAULT DASHBOARD") ;

String repCacheSize

String defDashboard

System.out.println("User Id---"+userId);
System.out.println("Org Id---"+orgld);
System.out.println("User Status---"+userStatus);
System.out.println("Is Super Admin---"+isSuperAdmin);
System.out.println("Is Admin---"+isAdmin);
System.out.println("defFormat---"+defFormat);
System.out.println("language---"+lang);

System.out.println("Theme---"+theme);
System.out.println("Template Name---"+templateName);
System.out.println("Report Cache Size---"+repCacheSize);
System.out.println("Default Dashboard ---"+defDashboard);

Place the logical code in above method.

REPORTMGMTEVENTS

Intellicus facilitates Auditing callback events mechanism for Report Management Operations by "calling

your code" system. For this, Intellicus provides a class "ReportMgmtEvents".

Configuration
For implementing ReportMgmtEvents, EVENTSHANDLER TYPE should be: REPORTMGMTEVENTS.
Following code shows the XML entry having configuration of UMM Events.

<EVENTSHANDLER TYPE=" REPORTMGMTEVENTS”>
<CALLBACK CALLTYPE="1">
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<VALUE>com.mypackage.myclass</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>
</ EVENTSHANDLER>

During callback events process Intellicus Report Server will call these methods:

238

1. void afterCategoryAdd(Object categorylnfo): Provides the callback event Infomation after a new
Category is added in Intellicus. Provides this information to the java class using HashMap as object.

2. void afterCategoryModify(Object categoryInfo): Provides the callback event Infomation after any
existing Category is modified in Intellicus. Provides this information to the java class using
HashMap as object.

3. void afterCategoryDelete(Object categoryinfo): Provides the callback event Infomation after any
Category is deleted in Intellicus. Provides this information to the java class using HashMap as
object.

4. void afterReportAdd(Object reportinfo): Provides the callback event Infomation after a new Report
is added in Intellicus. Provides this information to the java class using HashMap as object.

5. void afterReportModify(Object reportinfo): Provides the callback event Infomation after any
existing Report is modified in Intellicus. Provides this information to the java class using HashMap
as object.

6. void afterReportDelete(Object reportinfo): Provides the callback event Infomation after any Report
is deleted in Intellicus. Provides this information to the java class using HashMap as object.

Sample Implementation code

import com.impetus.interaj.callback.ReportMgmtEvents;
public class ReportMgmtCallbackImpl extends AuditEvents {
}

AFTER CATEGORY ADD

To get the Category details when new Category is being added to Intellicus. This event is triggered after
Category is created.

The following method of the class will be called in this event.

void afterCategoryAdd (java.lang.Object categorylnfo)

Intellicus supports callback event for new Category creation in Application. In Intellicus, users are allowed to
create new Categories. So at the time new Category is created, Intellicus raises a callback event (i.e.
afterCategoryAdd) on the call back instance. It also provides the Category related information to the

callback event. So at the callback code clients may view all Categoryproperties.

This callback event executes each time a new Category is created in Intellicus.

239

Event Info Hash Map

Key Value

CATEGORY_OBJECT Category (Web client’s class com.intellica.client.reportutils.

Category) object of added category.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

USER_INFO HashMap

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

240

afterCategoryAdd

public void afterCategoryAdd(Object catInfo){
System.out.println("Inside afterCategoryAdd()");
//Get the Category(com.intellica.client.reportutils.Category)
//object of added category.
Category catObject = (Category) ((HashMap)catInfo).get
("CATEGORY OBJECT");
System.out.println("Category Name : "+catObject.getMenuName());
System.out.println("CategoryDesc:"+catObject.getDescription());
System.out.println("Category isPublic =
"+catObject.getIsPublic());
System.out.println("Created Date :
"+catObject.getRepositDate());
System.out.println("Category Access Rights :
"+catObject.getAccessRights());
System.out.println("------- UserInfo details ------- ");
//Hash Map of USER INFO which contains following values.
HashMap userInfo =
(HashMap) ((HashMap)catInfo).get("USER INFO");
System.out.println("USERINFO USERID ===
"+((HashMap)userInfo).get("USERINFO USERID"));
System.out.println("USERINFO ORGID ===
"+((HashMap)userInfo).get("USERINFO ORGID"));
System.out.println("USERINFO SESSIONID ===
"+((HashMap)userInfo).get("USERINFO SESSIONID"));
System.out.println("USERINFO SD ===
"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));
System.out.println("USERINFO CUSTOMERID ===
"+((HashMap)userInfo).get ("USERINFO CUSTOMERID"));
System.out.println("USERINFO LOCATION ===
"+((HashMap)userInfo).get("USERINFO LOCATION"));
System.out.println("USERINFO LOCALE ===
"+((HashMap)userInfo).get("USERINFO LOCALE"));
System.out.println("USERINFO DBNAME ===
"+((HashMap)userInfo).get("USERINFO DBNAME"));
System.out.println("USERINFO ROLES ===
"+((HashMap)userInfo).get("USERINFO ROLES"));
System.out.println("USERINFO Conn Name ===
"+((HashMap)userInfo).get("USERINFO CONNECTION NAME"));
System.out.println("End Of afterCategoryAdd()! ");

Place the logical code in above method.

AFTER CATEGORY MODIFY

This method will be used to Audit modified Category Information in callback code. This event will be raised

each time any existing category object is modified.

The following method of the class will be called in this event.

241

void afterCategoryModify(java.lang.Object categorylnfo)

Event Info Hash Map

Key Value

CATEGORY_OBJECT Category (Web client’s class com.intellica.client.reportutils.

Category) object of modified category.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key Value

USERINFO_USERID USER ID passed to Report Server for execution of report.
USERINFO_ORGID ORGID passed to Report Server for execution of report.
USERINFO_SESSIONID Session id.

USERINFO_SECURITY_DESCRIPTOR Security Descriptor string.

USERINFO_CUSTOMERID Customer id, for Service Provider deployments.
USERINFO_LOCATION Location.

USERINFO_LOCALE Locale setting of browser.

USERINFO_TIMESTAMP Time of request in Java time stamp milliseconds.
USERINFO_DBNAME String: Data base name.

USERINFO_ROLES Roles granted to the user.

242

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterCategoryModify

public void afterCategoryModify(Object catInfo){

System.out.println("

Inside afterCategoryModify() ");

//Get the Category(com.intellica.client.reportutils.Category)

//object of modified
Category catObject =

(Category) ((HashMap)catInfo).get ("CATEGORY OBJECT");

category.

System.out.println("Category Name : "+catObject.getMenuName());
System.out.println("Category Description :

"+catObject.getDescription());

System.out.println("Category isPublic =

"+catObject.getIsPublic());

System.out.println("Created Date :

"+catObject.getRepositDate());

System.out.println("Category Access Rights :
"+catObject.getAccessRights());

System.out.println("

------- UserInfo details -------");

//Hash Map of USER INFO which contains following values.

HashMap userInfo =

(HashMap) ((HashMap)catInfo).get("USER INFO");
System.out.println("USERINFO USERID ===

"+((HashMap)userInfo).get("USERINFO USERID"));
System.out.println("USERINFO ORGID ===

"+((HashMap)userInfo).get ("USERINFO_ORGID"));

System.out.println("USERINFO SESSIONID ===

"+((HashMap)userInfo).get("USERINFO SESSIONID"));
System.out.println("USERINFO SD ===

"+((HashMap)userInfo

) .get ("USERINFO SECURITY DESCRIPTOR"));

System.out.println("USERINFO CUSTOMERID ===
"+((HashMap)userInfo).get("USERINFO CUSTOMERID"));
System.out.println("USERINFO_LOCATION ===
"+((HashMap)userInfo).get("USERINFO LOCATION"));
System.out.println("USERINFO LOCALE ===
"+((HashMap)userInfo).get("USERINFO LOCALE"));
System.out.println("USERINFO DBNAME ===
"+((HashMap)userInfo).get("USERINFO DBNAME"));
System.out.println("USERINFO ROLES ===
"+((HashMap)userInfo).get("USERINFO ROLES"));
System.out.println("USERINFO Conn_ Name ===
"+((HashMap)userInfo).get("USERINFO CONNECTION NAME"));

System.out.println("

End Of afterCategoryModify()");

243

AFTER CATEGORY DELETE

This method will be used to Audit deleted Category Information in callback code. This event will be raised

each time any category object is deleted.

The following method of the class will be called in this event.

void afterCategoryModify(java.lang.Object categoryinfo)

Event Info Hash Map

Key Value

CATEGORY_OBJECT Category (Web client’s class com.intellica.client.reportutils.

Category) object of deleted category.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

244

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterCategoryDelete

public void afterCategoryDelete(Object catInfo){
System.out.println("Inside afterCategoryDelete() ");

//Get the Category(com.intellica.client.reportutils.Category)
//object of modified category.

Category catObject =

(Category) ((HashMap)catInfo) .get("CATEGORY OBJECT");

System.out.println("Category Name : "+catObject.getMenuName());
System.out.println("Category Description :

"+catObject.getDescription());

System.out.println("Category isPublic =

"+catObject.getIsPublic());

System.out.println("Created Date :

"+catObject.getRepositDate());

System.out.println("Category Access Rights :
"+catObject.getAccessRights());

System.out.println("

---- UserInfo details ------- ")

//Hash Map of USER INFO which contains following values.

HashMap userInfo =

(HashMap) ((HashMap)catInfo).get("USER INFO");
System.out.println("USERINFO USERID ===
"+((HashMap)userInfo).get("USERINFO USERID"));
System.out.println("USERINFO ORGID ===
"+((HashMap)userInfo).get("USERINFO ORGID"));
System.out.println("USERINFO SESSIONID ===
"+((HashMap)userInfo).get("USERINFO SESSIONID"));
System.out.println("USERINFO SD ===
"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));
System.out.println("USERINFO_CUSTOMERID ===
"+((HashMap)userInfo).get ("USERINFO CUSTOMERID"));
System.out.println("USERINFO LOCATION ===
"+((HashMap)userInfo).get ("USERINFO LOCATION"));
System.out.println("USERINFO LOCALE ===
"+((HashMap)userInfo).get ("USERINFO LOCALE"));
System.out.println("USERINFO DBNAME ===
"+((HashMap)userInfo).get("USERINFO DBNAME"));

245

System.out.println("USERINFO ROLES ===
"+((HashMap)userInfo).get("USERINFO ROLES"));

System.out.println("USERINFO Conn Name ===
"+((HashMap)userInfo).get("USERINFO CONNECTION NAME"));

System.out.println("End Of afterCategoryDelete()");

Place the logical code in above method.

AFTER REPORT ADD

This method will be used to Audit newly added Report Information in callback code. This event will be raised

each time a new report is added.

The following method of the class will be called in this event.

void afterReportAdd(java.lang.Object reportinfo)

Event Info Hash Map

Key Value

REPORT_LAYOUT_OBJECT IRL (Web client’s class com.impetus.intera.

layout.InteraReportLayout) / ARL (Web client’s

com.impetus.intera.layout.adhoc.

AdhocReportLayout) object of Report added.

REPORTID Report ID.

REPORTNAME Report Name.

CATEGORYID Id of category in which report added.
VERSIONNO Report Version No.

VERSIONDATE Report Version Date.

DESIGNSTATUS Design Status.

DEPL_TYPE Deployment Type.

246

IRLVERSION IRL version of report.
LONGDESC Description of report.
TITLE Report Title.

PRINTSETTINGNAME

Print Settings set for the report.

FORMAT

Default format set for the report in which report will execute.

CONNECTION_NAME

Name of connection used for report.

DSGN_MODE

Report design mode.

CONTENT_TYPE

Content Type set for the report.

REPOSITDATE

Reposit Date of an operation.

APPID Id of a user who added report.

ORGID Organization id of a user who added report.
ISPUBLIC Whether report is public or not.

ISHIDDEN Whether report is hidden or not.

REPORT_SUMMARY

Report summary.

PUBLISH_WORKFLOW_ID

Workflow id of a report.

SRC_REPORTID

Id of a parent report which will be available only for link reports.

USER_INFO

Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

247

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterReportAdd

public void afterReportAdd(Object repInfo){

System.out.println("*****x*x*xxx Tnsjde afterReportAdded () *kikkkkm).
System.out.println("Report ID="+((HashMap)repInfo).get("REPORTID"));
System.out.println("Report Name="+((HashMap)repInfo).
get ("REPORTNAME")) ;
System.out.println("Category ID="+((HashMap)repInfo).get
("CATEGORYID"));
System.out.println("Version ID="+((HashMap)repInfo).get
("VERSIONID"));
System.out.println("Version
No.="+((HashMap) repInfo).get ("VERSIONNO"));
System.out.println("Version Date="+((HashMap)repInfo).get
("VERSIONDATE"));

248

System.
System.
System.
System.
System.

System.

System.
System.

System.
System.
System.
System.
System.
System.
System.
System.

System.

System.

System.

out.

out.

out.

out.

out.

out.

out.
out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

println("Design Status="+((HashMap)repInfo).get
("DESIGNSTATUS"));
println("Deployment Type="+((HashMap)repInfo).get
("DEPL_TYPE"));
println("IRL Version="+((HashMap)repInfo).get
("IRLVERSION"));
println("Long Desc="+((HashMap)repInfo).get ("LONGDESC"));
println("Title = "+((HashMap)repInfo).get("TITLE"));
println("Print Setting Name="+((HashMap)repInfo).get
("PRINTSETTINGNAME")) ;
println("Report Format="+((HashMap)repInfo).get ("FORMAT"));
println("Connection Name =
"+((HashMap) repInfo).get("CONNECTION NAME"));
println("Design Mode =
"+((HashMap) repInfo) .get("DSGN_MODE"));
println("Content Type =
"+((HashMap) repInfo).get("CONTENT TYPE"));
println("Repository Date =
"+((HashMap) repInfo) .get ("REPOSITDATE"));
println("App ID = "+((HashMap)repInfo).get("APPID"));
println("Org ID = "+((HashMap)repInfo).get("ORGID"));
println("isPublic =
"+((HashMap) repInfo).get("ISPUBLIC"));
println("isHidden =
"+((HashMap) repInfo).get("ISHIDDEN")) ;
println("Report Summary =
"+((HashMap) repInfo).get ("REPORT SUMMARY"));
println("Publish Workflow Id =
"+((HashMap) repInfo).get("PUBLISH WORKFLOW ID"));
println("Source Report ID =
"+((HashMap) repInfo) .get ("SRC_REPORTID"));

println("------- UserInfo details ------- ");

//Hash Map of USER INFO which contains following values.
HashMap userInfo = (HashMap) ((HashMap)repInfo).get("USER INF0");

System.
System.
System.
System.
System.
System.
System.
System.

System.

out.

out.

out.

out.

out.

out.

out.

out.

out.

println("USERINFO USERID ===

"+((HashMap)userInfo).get("USERINFO USERID"));
println("USERINFO ORGID ===

"+((HashMap)userInfo).get("USERINFO_ORGID"));
println("USERINFO SESSIONID ===

"+((HashMap)userInfo).get("USERINFO SESSIONID"));
println("USERINFO SD ===

"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));
println("USERINFO CUSTOMERID ===

"+((HashMap)userInfo).get("USERINFO CUSTOMERID"));
println("USERINFO LOCATION ===

"+((HashMap)userInfo).get("USERINFO LOCATION"));
println("USERINFO LOCALE ===

"+((HashMap)userInfo).get("USERINFO_LOCALE"));
println("USERINFO DBNAME ===

"+((HashMap)userInfo).get ("USERINFO DBNAME"));
println("USERINFO ROLES ===

"+((HashMap)userInfo).get("USERINFO ROLES"));

249

System.out.println("USERINFO Conn Name ===
"+((HashMap)userInfo).get("USERINFO CONNECTION NAME"));
System.out.println("*****x*xx*xx End Of afterReportAdded() *****"),;

}

AFTER REPORT MODIFY

This method will be used to Audit modified Report Information in callback code. This event will be raised

each time any existing report is modified.

The following method of the class will be called in this event.

void afterReportModify(java.lang.Object reportinfo)

Event Info Hash Map

Key

Value

REPORT_LAYOUT_OBJECT

IRL (Web client’s class com.impetus.intera.

layout.InteraReportLayout) / ARL (Web client’s

com.impetus.intera.layout.adhoc.

AdhocReportLayout) object of Report modified. If Report Design is
updated, then only this attribute will contain IRL/ARL object
otherwise it will contain null.

REPORTID Report ID.

REPORTNAME Report Name.

CATEGORYID Id of category in which report modifed.
VERSIONNO Report Version No.

VERSIONDATE

Report Version Date.

DESIGNSTATUS

Design Status.

DEPL_TYPE

Deployment Type.

IRLVERSION

IRL version of report.

250

LONGDESC

Description of report.

TITLE

Report Title.

PRINTSETTINGNAME

Print Settings set for the report.

FORMAT

Default format set for the report in which report will execute.

CONNECTION_NAME

Name of connection used for report.

DSGN_MODE

Report design mode.

CONTENT_TYPE

Content Type.

REPOSITDATE

Reposit Date of an operation.

APPID Id of a user who added report.

ORGID Organization id of a user who added report.
ISPUBLIC Whether report is public or not.

ISHIDDEN Whether report is hidden or not.

REPORT_SUMMARY

Report summary.

PUBLISH_WORKFLOW_ID

Workflow id of a report.

SRC_REPORTID

Id of a parent or link report.

USER_INFO

Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

251

USERINFO_ORGID ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID Session id.

USERINFO_SECURITY_DESCRIPTOR Security Descriptor string.

USERINFO_CUSTOMERID Customer id, for Service Provider deployments.

USERINFO_LOCATION Location.

USERINFO_LOCALE Locale setting of browser.

USERINFO_TIMESTAMP Time of request in Java time stamp milliseconds.

USERINFO_DBNAME String: Data base name.

USERINFO_ROLES Roles granted to the user.

USERINFO_CONNECTION_NAME Connection name requested to use for the report.
afterReportModify

public void afterReportModify (Object repInfo){

System.out.println("*****x*x*xx*x Tnsjde afterReportModified() ****");

System.out.println("Report ID="+((HashMap)repInfo).get("REPORTID"));

System.out.println("Report Name="+((HashMap)repInfo).
get ("REPORTNAME")) ;

System.out.println("Category ID="+((HashMap)repInfo).get
("CATEGORYID"));

System.out.println("Version ID="+((HashMap)repInfo).get
("VERSIONID"));

System.out.println("Version

No.="+((HashMap) repInfo).get ("VERSIONNO"));

System.out.println("Version Date="+((HashMap)repInfo).get
("VERSIONDATE"));

System.out.println("Design Status="+((HashMap)repInfo).get
("DESIGNSTATUS"));

System.out.println("Deployment Type="+((HashMap)repInfo).get
("DEPL_TYPE"));

System.out.println("IRL Version="+((HashMap)repInfo).get
("IRLVERSION"));

252

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

System.

System.

System.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

println("Long Desc="+((HashMap)repInfo).get ("LONGDESC"));
println("Title = "+((HashMap)repInfo).get("TITLE"));
println("Print Setting Name="+((HashMap)repInfo).get

("PRINTSETTINGNAME")) ;
println("Report Format="+((HashMap)repInfo).get

("FORMAT"));
println("Connection Name =

"+((HashMap) repInfo) .get ("CONNECTION NAME"));
println("Design Mode =

"+((HashMap) repInfo) .get("DSGN_MODE"));
println("Content Type =

"+((HashMap) repInfo) .get ("CONTENT TYPE"));
println("Repository Date =

"+((HashMap) repInfo) .get ("REPOSITDATE"));
println("App ID = "+((HashMap)repInfo).get("APPID"));
println("Org ID = "+((HashMap)repInfo).get("ORGID"));
println("isPublic =

"+((HashMap) repInfo).get("ISPUBLIC"));
println("isHidden =

"+((HashMap) repInfo).get("ISHIDDEN")) ;
println("Report Summary =

"+((HashMap) repInfo).get("REPORT SUMMARY"));
println("Publish Workflow Id =

"+((HashMap) repInfo).get("PUBLISH WORKFLOW ID"));
println("Source Report ID =

"+((HashMap) repInfo) .get("SRC_REPORTID"));

println("------- UserInfo details ------- "y

//Hash Map of USER INFO which contains following values.
HashMap userInfo = (HashMap) ((HashMap)repInfo).get("USER INF0");
System.out.println("USERINFO USERID ===

System

System.
System.
System.
System.
System.
System.
System.
System.

System.

}

.out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

"+((HashMap)userInfo).get("USERINFO USERID"));
println("USERINFO_ORGID ===

"+((HashMap)userInfo).get("USERINFO_ORGID"));
println("USERINFO_SESSIONID ===

"+((HashMap)userInfo).get("USERINFO_SESSIONID"));
println("USERINFO_SD ===

"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));

println("USERINFO CUSTOMERID ===

"+((HashMap)userInfo).get("USERINFO CUSTOMERID"));
println("USERINFO LOCATION ===

"+((HashMap)userInfo).get("USERINFO LOCATION"));
println("USERINFO LOCALE ===

"+((HashMap)userInfo).get("USERINFO LOCALE"));
println("USERINFO DBNAME ===

"+((HashMap)userInfo).get("USERINFO DBNAME"));
println("USERINFO ROLES ===

"+((HashMap)userInfo).get ("USERINFO ROLES"));
println("USERINFO Conn Name ===

"+((HashMap)userInfo).get("USERINFO_CONNECTION_NAME"));

println("*+*+skxex End OF afterReportModified() ****x");

253

Place the logical code in above method.

AFTER REPORT DELETE

This method will be used to Audit deleted Report Information in callback code. This event will be raised

each time any existing report is deleted.

The following method of the class will be called in this event.

void afterReportDelete(java.lang.Object reportinfo)

Event Info Hash Map

Key Value

REPORTID Report ID.

REPORTNAME Report Name.

CATEGORYID Id of category from which report deleted.
VERSIONNO Report Version No.

VERSIONDATE

Report Version Date.

DESIGNSTATUS

Design Status.

DEPL_TYPE Deployment Type.
IRLVERSION IRL version of report.
LONGDESC Description of report.
TITLE Report Title.

PRINTSETTINGNAME

Print Settings set for the report.

FORMAT

Default format set for the report in which report will execute.

CONNECTION_NAME

Name of connection used for report.

254

DSGN_MODE

Report design mode.

CONTENT_TYPE

Content Type.

REPOSITDATE

Reposit Date of an operation.

APPID Id of a user who deleted report.
ORGID Organization id of a user who deleted report.
ISPUBLIC Whether report is public or not.
ISHIDDEN Whether report is hidden or not.

REPORT_SUMMARY

Report summary.

PUBLISH_WORKFLOW_ID

Workflow id of a report.

SRC_REPORTID

Id of a parent or link report.

USER_INFO

Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

255

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION Location.

USERINFO_LOCALE Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME String: Data base name.

USERINFO_ROLES Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterReportDelete

public

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

System.

System.

void afterReportDelete(Object repInfo){

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

println("*******x*xxx Tnside afterReportDeleted() *****x*xt);

println("Report ID="+((HashMap)repInfo).get("REPORTID"));

println("Report Name="+((HashMap)repInfo).
get ("REPORTNAME")) ;

println("Category ID="+((HashMap)repInfo).get
("CATEGORYID"));

println("Version ID="+((HashMap)repInfo).get
("VERSIONID"));

println("Version

No.="+((HashMap) repInfo).get ("VERSIONNO"));

println("Version Date="+((HashMap)repInfo).get
("VERSIONDATE"));

println("Design Status="+((HashMap)repInfo).get
("DESIGNSTATUS"));

println("Deployment Type="+((HashMap)repInfo).get
("DEPL_TYPE"));

println("IRL Version="+((HashMap)repInfo).get
("IRLVERSION"));

println("Long Desc="+((HashMap)repInfo).get("LONGDESC"));

println("Title = "+((HashMap)repInfo).get("TITLE"));

println("Print Setting Name="+((HashMap)repInfo).get
("PRINTSETTINGNAME")) ;

println("Report Format="+((HashMap)repInfo).get
("FORMAT"));

println("Connection Name =
"+((HashMap) repInfo) .get ("CONNECTION NAME"));

println("Design Mode =
"+((HashMap) repInfo) .get("DSGN MODE"));

256

System.out.println("Content Type =

"+((HashMap) repInfo).get("CONTENT TYPE"));
System.out.println("Repository Date =

"+((HashMap) repInfo) .get ("REPOSITDATE"));
System.out.println("App ID = "+((HashMap)repInfo).get("APPID"));
System.out.println("Org ID "+((HashMap) repInfo).get("ORGID"));
System.out.println("isPublic =

"+((HashMap) repInfo) .get ("ISPUBLIC"));
System.out.println("isHidden =

"+((HashMap) repInfo) .get ("ISHIDDEN")) ;
System.out.println("Report Summary =

"+((HashMap) repInfo).get ("REPORT SUMMARY"));
System.out.println("Publish Workflow Id =

"+((HashMap) repInfo).get("PUBLISH WORKFLOW ID"));
System.out.println("Source Report ID =

"+((HashMap) repInfo).get("SRC REPORTID"));

System.out.println("------- UserInfo details ------- ");
//Hash Map of USER INFO which contains following values.
HashMap userInfo = (HashMap) ((HashMap)repInfo).get("USER INFO0");
System.out.println("USERINFO USERID ===
"+((HashMap)userInfo).get("USERINFO USERID"));
System.out.println("USERINFO ORGID ===
"+((HashMap)userInfo).get("USERINFO ORGID"));
System.out.println("USERINFO SESSIONID ===
"+((HashMap)userInfo).get("USERINFO SESSIONID"));
System.out.println("USERINFO SD ===
"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));
System.out.println("USERINFO CUSTOMERID ===
"+((HashMap)userInfo).get("USERINFO CUSTOMERID"));
System.out.println("USERINFO LOCATION ===
"+((HashMap)userInfo).get("USERINFO LOCATION"));
System.out.println("USERINFO LOCALE ===
"+((HashMap)userInfo).get("USERINFO LOCALE"));
System.out.println("USERINFO DBNAME ===
"+((HashMap)userInfo).get("USERINFO DBNAME"));
System.out.println("USERINFO ROLES ===
"+((HashMap)userInfo).get("USERINFO ROLES"));
System.out.println("USERINFO Conn Name ===
"+((HashMap)userInfo).get("USERINFO CONNECTION NAME"));
System.out.println("¥¥*x¥kkkkkd*k Fnd Of afterReportDeleted() *****");

}

Place the logical code in above method.

ROMGMTEVENTS

Intellicus facilitates Auditing callback events mechanism for Report Object Management Operations by
"calling your code" system.

Intellicus provides a class "ReportObjectMgmtEvents"

257

Configuration

For implementing ROMgmtEvents, EVENTSHANDLER TYPE should be: ROMGMTEVENTS.

Following code shows the XML entry having configuration of UMM Events.

<EVENTSHANDLER TYPE=" ROMGMTEVENTS">

<CALLBACK CALLTYPE="1">
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<VALUE>com.mypackage.myclass</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>

</ EVENTSHANDLER>

During callback events process Intellicus Report Server will call these methods:

1.

void afterReportObjectAdd(Object reportObjectinfo): Provide the callback event Infomation after a
new Report Object(Query Object/Parameter Object) is added in Intellicus. Provide this information
to the java class using HashMap as object.

void afterReportObjectModify(Object reportObjectinfo): Provide the callback event Infomation
after any existing Report Object(Query Object/Parameter Object) is modified in Intellicus. Provide
this information to the java class using HashMap as object.

void afterReportObjectDelete(Object reportObjectinfo): Provide the callback event Infomation after
any Report Object(Query Object/Parameter Object) is deleted in Intellicus. Provide this information
to the java class using HashMap as object.

Sample Implementation code

import com.impetus.interaj.callback.ROMgmtEvents;
public class ReportMgmtCallbackImpl extends ROMgmtEvents {

}

AFTER REPORTOBJECT ADD

This method will be used to Audit newly added Report Object (Query Object/Parameter Object) Information
in callback code. This event will be raised each time a new report object is added.

The following method of the class will be called in this event.

258

void afterReportObjectAdd (java.lang.Object reportObjectinfo)

Event Info Hash Map

Key Value

REPORT_OBJECT Report Object (Web client’s class com.impetus.intera.reportobjects.

ReportObject) of QO/PO added.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

259

Key

Value

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterReportObjectAdd

public void afterReportObjectAdd(Object ROInfo){
System.out.println("*******xxx*x Tnside afterReportObjectAdd() ***");
//Get the object of ReportObject that is newly added.

ReportObject reportObject = (ReportObject) ((HashMap)ROInfo).get("REPORT OBJECT");

System.
System.
System.
System.

System.
//Hash

out.
out.
out.
out.

out.

Map

println("Report Object ID : "+reportObject.getId());

println("Report Object Name : "+reportObject.getName());

println("Report Object Type = "+reportObject.getType());

println("Report Object Description :
"+reportObject.getDescription());

println("------- UserInfo details ------- ");

of USER INFO which contains following values.

HashMap userInfo = (HashMap) ((HashMap)ROInfo).get("USER INFQO");

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.
}

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

out.

println("USERINFO_USERID ===
"+((HashMap)userInfo).get ("USERINFO_USERID"));
println("USERINFO ORGID ===
"+((HashMap)userInfo).get("USERINFO_ORGID"));
println("USERINFO SESSIONID ===
"+((HashMap)userInfo).get("USERINFO SESSIONID"));
println("USERINFO SD ===
"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));
println("USERINFO_CUSTOMERID ===
“+((HashMap)userInfo).get("USERINFO_CUSTOMERID"));
println("USERINFO LOCATION ===
"+((HashMap)userInfo).get("USERINFO_LOCATION"));
println("USERINFO LOCALE ===
"+((HashMap)userInfo).get("USERINFO LOCALE"));
println("USERINFO DBNAME ===
"+((HashMap)userInfo).get("USERINFO DBNAME"));
println("USERINFO_ROLES ===
"+((HashMap)userInfo).get("USERINFO ROLES"));
println("USERINFO Conn Name ===
"+((HashMap)userInfo).get("USERINFO_CONNECTION NAME"));

println("****x***x* End Of afterReportObjectAdd() ***");

Place the logical code in above method.

260

AFTER REPORTOBJECTMODIFY

This method will be used to Audit modified Report Object (Query Object/Parameter Object) Information in

callback code. This event will be raised each time any existing report object is modified.

The following method of the class will be called in this event.

void afterReportObjectModify (java.lang.Object reportinfo)

Event Info Hash Map

Key Value

REPORT_OBJECT Report Object (Web client’s class com.impetus.intera.reportobjects.

ReportObject) of QO/PO modified.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

261

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterReportObjectModify

public void afterReportObjectModify(Obj

ect ROInfo){

System.out.println("***** Tnside afterReportObjectModify() *");

//Get the object of ReportObject that i
ReportObject reportObject =

s modified.

(ReportObject) ((HashMap)R0Info) .get ("REPORT OBJECT");

System.out.println("Report Object ID :

System.out.println("Report Object Name :

System.out.println("Report Object Type
System.out.println("Report Object Descr

"+reportObject.getId());
"+reportObject.getName());
= "+reportObject.getType());
iption :

"+reportObject.getDescription());

System.out.println("------- UserInfo de
//Hash Map of USER INFO which contains

tails ------- "),
following values.

HashMap userInfo = (HashMap) ((HashMap)ROInfo).get("USER INFO");

System.out.println("USERINFO USERID ===

“+((HashMap)userInfo).get("USERINFO USERID"));

System.out.println("USERINFO ORGID ===

"+((HashMap)userInfo).get("USERINFO ORGID"));

System.out.println("USERINFO SESSIONID

"+((HashMap)userInfo).get("USERINFO SESSIONID"));

System.out.println("USERINFO SD ===

"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));

System.out.println("USERINFO CUSTOMERID

"+((HashMap)userInfo).get ("USERINFO CUSTOMERID"));

System.out.println("USERINFO LOCATION =

"+((HashMap)userInfo).get("USERINFO LOCATION"));

System.out.println("USERINFO_LOCALE ===
"+((HashMap)userInfo).get(
System.out.println("USERINFO DBNAME ===
"+((HashMap)userInfo).get(
System.out.println("USERINFO ROLES ===
"+((HashMap)userInfo).get(
System.out.println("USERINFO Conn Name
"+((HashMap)userInfo).get(

System.out.println("***** End Of afterR
}

"USERINFO LOCALE"));
"USERINFO DBNAME"));

"USERINFO ROLES"));

"USERINFO CONNECTION NAME"));

eportObjectModify () ****");

262

Place the logical code in above method.

AFTER REPORTOBJECT DELETE

This method will be used to Audit deleted Report Object(Query Object/Parameter Object) Information in

callback code. This event will be raised each time any report object is deleted.

The following method of the class will be called in this event.

void afterReportObjectDelete (java.lang.Object reportinfo)

Event Info Hash Map

Key Value

REPORT_OBJECT Report Object (Web client’s class com.impetus.intera.reportobjects.

ReportObject) of QO/PO deleted.

USER_INFO Hash Map of USER_INFO.

Refer to USER_INFO table below for values inside this HashMap.

User Info Hash Map

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report.

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

263

USERINFO_LOCATION Location.

USERINFO_LOCALE Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME String: Data base name.

USERINFO_ROLES Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

afterReportObjectDelete

public

System.

void afterReportObjectDelete(Object ROInfo){

out.println("******* Tnsjde afterReportObjectDelete() ****"),

//Get the object of ReportObject that is Deleted.
ReportObject reportObject =

System.
System.
System.
System.

System.
//Hash

(ReportObject) ((HashMap)ROInfo) .get ("REPORT OBJECT");

out.println("Report Object ID : "+reportObject.getld());
out.println("Report Object Name : "+reportObject.getName());
out.println("Report Object Type = "+reportObject.getType());
out.println("Report Object Description :
"+reportObject.getDescription());

out.println("------- UserInfo details ------- ");
Map of USER INFO which contains following values.

HashMap userInfo = (HashMap) ((HashMap)ROInfo).get("USER INFO");

System.
System.
System.
System.
System.
System.
System.

System.

out.println("USERINFO USERID ===
"+((HashMap)userInfo).get("USERINFO USERID"));
out.println("USERINFO_ORGID ===
"+((HashMap)userInfo).get("USERINFO ORGID"));
out.println("USERINFO SESSIONID ===
"+((HashMap)userInfo).get("USERINFO SESSIONID"));
out.println("USERINFO SD ===

"+((HashMap)userInfo).get("USERINFO SECURITY DESCRIPTOR"));

out.println("USERINFO CUSTOMERID ===
"+((HashMap)userInfo).get("USERINFO CUSTOMERID"));
out.println("USERINFO LOCATION ===
"+((HashMap)userInfo).get ("USERINFO LOCATION"));
out.println("USERINFO LOCALE ===
"+((HashMap)userInfo).get("USERINFO LOCALE"));
out.println("USERINFO DBNAME ===
"+((HashMap)userInfo).get("USERINFO DBNAME"));

264

System.out.println("USERINFO ROLES ===
"+((HashMap)userInfo).get("USERINFO ROLES"));

System.out.println("USERINFO Conn Name ===
"+((HashMap)userInfo).get("USERINFO CONNECTION NAME"));

System.out.println("******x End Of afterReportObjectDelete()*****x*x") .
}

Place the logical code in above method.

DynamicQOEvents
DynamicQOEvents is to dynamically modify the existing QO or get an external QO.

This event can be implemented to Add/Delete columns and/or modify column attributes of the associated

Query object, before the Report Execution.

Also, it enables fetching of external Query Object for running a Report i.e. User can create QO dynamically

without saving it in Intellicus Repository.

Configuration
For implementing DynamicQOEvents, EVENTSHANDLER TYPE should be: DYNAMICQOEVENTS.
Following code shows the XML entry having configuration of UMM Events.

<EVENTSHANDLER TYPE="DYNAMICQOEVENTS">
<!l-- The callback type attribute defines the call back mode
implemented
Supported mode is 1 which is LOCAL callback mode -->
<CALLBACK CALLTYPE="1">
<!-- The callback implementer attribute defines the call
back implementor type
Supported mode is 1 which is JAVA callback implemeter
type -->
<IMPLEMENTER TYPE="1">
<ATTRS TYPE="1">
<ATTR NAME="PATH">
<!--Specify the name of the class that is
extending the base class. Make sure that the class is present in the classpath of
the Report Server.-->
<VALUE>DynamicQOCallbackImpl</VALUE>
</ATTR>
</ATTRS>
</IMPLEMENTER>
</CALLBACK>
</EVENTSHANDLER>

During callback events process Intellicus Report Server will call these methods:

265

1. void getDynamicColumns(java.util.Map<java.lang.String,java.lang.Object> queryObjectinfo): This
method will be used to get columns for dynamic columns.

2. void getExternalQueryObject (java.util.Map<java.lang.String,java.lang.Object> queryObjectinfo):
This method will be used to fetch external query object.

Sample Implementation code

import com.impetus.interaj.callback.DynamicQOEvents;
public class DynamicQOCallbackImpl extends DynamicQOEvents

{
}

Get Dynamic Columns

This method will be used to get columns for dynamic columns. The method will be called when dynamic

columns are required
The following method of the class will be called in this event.
public void getDynamicColumns

(java.util.Map<java.lang.String, java.lang.0Object> queryObjectInfo)
throws java.lang.Exception

Parameter-

queryObjectinfo Map- This is generally a HashMap that contains Report Object Information. The HashMap

contains following values:

queryObjectinfo Map

Key Value
QUERY_OBJECT com.impetus.intera.reportobjects.QueryObject
CONNECTION java.sgl.connection class object => The connection used to

execute the report.

USER_INFO HashMap Hash Map of USER_INFO which contains following values.

266

file://///192.168.33.93/FileSharing/SG/InterfaceDoc/com/impetus/interaj/callback/DynamicQOEvents.html%23getDynamicColumns%2528java.util.Map%2529

Key

Value

SYS_PARAMS

Hash Map of all System Parameters passed to the Report.
KEY of each element is the name of system parameter and

VALUE is the string of parameter value

USER_PARAMS

Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the

string of parameter value.

USER_INFO HashMap

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

USERINFO_CUSTOMERID

Customer id, for Service Provider deployments.

USERINFO_LOCATION

Location.

USERINFO_LOCALE

Locale setting of browser.

USERINFO_TIMESTAMP

Time of request in Java time stamp milliseconds.

USERINFO_DBNAME

String: Data base name.

USERINFO_ROLES

Roles granted to the user.

USERINFO_CONNECTION_NAME

Connection name requested to use for the report.

267

getDynamicColumns

public void getDynamicColumns (Map<String,Object> queryObjectInfo) throws Exception
{

System.out.println("Inside getDynamicColumns");

//Get query object
QueryObject queryObject = (QueryObject)
queryObjectInfo.get("QUERY_OBJECT");

// Suppose a query object contains below columns

// CUSTOMER.CUST NO, CUSTOMER.CUSTOMER, CUSTOMER.STATUS,

// CUSTOMER.COMMENTS, CUSTOMER.TYPE

// Then

// Remove CUSTOMER.COMMENTS & CUSTOMER.TYPE dynamically by call back
queryObject.removeColumn("TYPE");

System.out.println("removed Column : TYPE");

queryObject.removeColumn("COMMENTS") ;
System.out.println("removed Column : COMMENTS");

System.out.println("End of getDynamicColumns");

Place the logical code in above method.

Get External Query Object

This method will be used to fetch external query object. The following method of the class will be called in
this event.

public void

getExternalQueryObject(java.util.Map<java.lang.String, java.lang.0bject> queryObject

Info)
throws java.lang.Exception

Parameter-

queryObjectinfo Map- This is generally a HashMap that contains Report Object Information. The HashMap

contains following values:

268

queryObjectinfo Map

Key

Value

QUERY_ID: String

Query Object ID

QUERY_NAME: String

Query Object Name

QUERY_OBJECT

com.impetus.intera.reportobjects.QueryObject

CONNECTION: java.sgl.connection

class object => The connection used to execute the report.

CONNECTION_NAME: String

The Intellicus connection name used in query object.

USER_INFO HashMap

Hash Map of USER_INFO which contains following values.

SYS_PARAMS

Hash Map of all System Parameters passed to the Report.
KEY of each element is the name of system parameter and

VALUE is the string of parameter value.

USER_PARAMS

Hash Map of all user parameters passed to the report.

KEY of each element is the parameter name and VALUE is the

string of parameter value.

USER_INFO HashMap

Key

Value

USERINFO_USERID

USER ID passed to Report Server for execution of report

USERINFO_ORGID

ORGID passed to Report Server for execution of report.

USERINFO_SESSIONID

Session id.

USERINFO_SECURITY_DESCRIPTOR

Security Descriptor string.

269

Key Value

USERINFO_CUSTOMERID Customer id, for Service Provider deployments.
USERINFO_LOCATION Location.

USERINFO_LOCALE Locale setting of browser.
USERINFO_TIMESTAMP Time of request in Java time stamp milliseconds.
USERINFO_DBNAME String: Data base name.

USERINFO_ROLES Roles granted to the user.
USERINFO_CONNECTION_NAME Connection name requested to use for the report.

getExternalQueryObject

public void getExternalQueryObject(Map<String,Object> queryObjectInfo) throws
Exception

{
System.out.println("Inside getExternalQueryObject");

//set the query object ID & name
String queryObjectID = "QueryObjectDel";
String queryObjectName = "QueryObjectDel";

//create SQL query
String sqlQuery = "select COUNTRY.* from COUNTRY";

System.out.println("Query Id = "+queryObjectID);
System.out.println("Query Name = "+queryObjectName);
System.out.println("SQL Query = "+sqlQuery);

//get the connection to execute query
Connection connection = (Connection)queryObjectInfo.get("CONNECTION");
String connectionName = (String)queryObjectInfo.get("CONNECTION NAME");

System.out.println("connectionName = "+connectionName);

if(connectionName==null)

{

connectionName="";

}

IResultSet iResultSet = this.executeQuery(sqlQuery, connection);

270

Place the logical code in above method.

<Intellicus_Install_Path>\SampleCodes\CallBack APIs\CallBack Events

271

6 JVista API

The document describes various properties, methods and events exposed by the JVista Report Viewer. It
also provides sample code snippets for a smooth understanding of the API. The APl is divided into two

portions:
Standard: Provides API calls for quick and loose integration.

Advanced: Provides API calls for advanced viewer configuration. This includes changing the look and feel
and the viewer behavior etc.

Standard API

This section describes the standard API provided by the JVista viewer. All the API functions are methods of
the JVista class. The user must instantiate the object of JVista class for using the JVista API. The JVista class
extends the JSplitPane swing container. This helps the user to integrate with their existing swing

applications.

Methods

SetReportProperties
Syntax

SetReportProperties(String reportID, String categoryID)
throws JVistaException

Used to provide details of the report.

Params

e ReportID: The ID of the report to be executed. In case when reports are stored in the database it is
the primary key of the row containing the report template file (table name: intera_rlayout). When
reports are stored in file system then it is the relative path of the file name with respect to the
reportlayout folder set in the Intellica Report Engine. This path also includes the category folder
names.

e CategorylD: The categorylD of the report. In case when reports are stored in the database it is the
primary key of the row containing the category of the reportID parameter (table name:
intera_rcategory). When reports are stored in files then it is the relative path of the category folder
with respect to the reportlayout folder set in the Intellica Report Engine.

272

SetTempDirectory

Syntax

(String tmpPathName) throws JVistaException

Used to set the temp folder path. The JVista viewer uses this path to create temporary files.

Params

e TmpPathName: The name of the temporary directory.

SetURL

Syntax
SetURL(URLConnection urlConn)

Used to set the URL from which the viewer will read the report.

Params

e UrlConn: Object of type java.net.URLConnection

setConfigProperty

Syntax

setConfigProperty (int key, Object value)

Used to set the Configuration related properties.

Params

e key: Object of type java.net.URLConnection
e value: Value of the key type Object.

Example: setConfigProperty(JVistaEnums.JVistaViewer.BACKCOLOR,Color.gray);

setPageChunkSize

setConfigProperty(JVistaEnums.JVistaViewer.BACKCOLOR, Color.gray);

273

Syntax
setPageChunkSize(int size)

Used to set the Page Chunk Size.

Params

e size: Size of Page Chunk

Example: setPageChunkSize(10)

setHostName

Syntax
setHostName(String hostName)

Used to set the IP Address of the Report Engine.

Params

e hostName: IP-Address of the Report Engine.

setHostPort

Syntax
setHostPort(int hostPort)

Used to set the Report Engine port

Params

e hostPort: Port Number of the Report Engine.

setReport

Syntax
setReport(String reportID, String categoryID, String menuName)

Used to set the Report Details that is to be viewed in JVista.

274

Params

e reportlID: Report ID of the Report that is to be viewed in JVista format
e categorylD: Category Id of the Category to which the Report belongs.
e menuName: Name of the Report.

SetURL

Overloaded function to take URL name as a parameter instead of an object. Used to set the URL from which

the viewer will read the report.

Syntax

SetURL(String urlName)

Params

e urlName: The fully qualified URL string.

Initialize

Initializes the JVista object.

Syntax
Initialize (String sessionID, JVistaEventinterface elnterface)

throws JVistaException

Params

e sessionlD: Used to uniquely identify the session for communication with the URL set the setURL
methods.

o elnterface: The callback interface used for providing report events to the host application. The
events are described in the Events section below.

ShowReport

Displays report on the JVista viewer.

275

Syntax

ShowReport(String reportinstancelD, boolean showParamForm) throws JVistaException

Params

e ReportinstancelD: This is for future use. Must be passed as blank string (“”).

ShowParamForm: Determines whether to display the report parameter form or not. Values (true/false).

Events

JVista can notify the application using it of certain events that take place during viewing a report. For this,
the application has to register a class-implementing interface JvistaEventinterface with the JVista instance

in use. Following are the methods in the interface:

public void onReportLoadComplete()

Notifies the observer of the completion of report download from the server.

public void onReportPrintComplete()

Notifies the observer of the completion of a print job fired from the viewer.

public void onReportPageChanged(int previousPage, int currentPage)

Notifies an observer whenever the page being viewed by the user is changed. The first argument is the

number of the old page and the second one is the number of the new page.

public void onError (JVistaException e)

Notifies an observer whenever there is an error during processing. The argument is the JVistaException

object. It contains methods to retrieve the error code and error string.

public void viewerlnitialized(void)

Notifies an observer whenever the viewer is loaded. This event must used to set the size of the viewer. See

code sample below.

276

Code Sample

Given below is a completely functional sample code to load and use the JVista viewer.

import com.intellica.jvista.JVista;
import com.intellica.jvista.ui.core.JVistaEventInterface;
import com.intellica.jvista.common.JVistaException;
import javax.swing.JFrame;
import javax.swing.UIManager;
import java.net.URL;
import java.net.URLConnection;
public class JVistaTest implements JVistaEventInterface
{
JFrame frame;
JVista jvista;
public JVistaTest()
{
}
public void initialize() throws JVistaException
{
//create a JFrame and initialize it
this.frame = new JFrame();
frame.pack();
frame.setVisible(true);
//Create a URL connection object
String URLString = "http://localhost/celer/IntellicaController";
URLConnection urlConnection = getURLConnection(URLString);
//create a JVista object and initialize it
this.jvista = new JVista();
this.jvista.setTempDirectory("c:\\temp");
this.jvista.initialize(this);
this.jvista.setReportPropeties("jvista/samplel”,"jvista");
//this.jvista.setURL("http://localhost/celer/IntellicaController");
this.jvista.setURL(urlConnection);

}

private URLConnection getURLConnection(String URLString)
{

URLConnection urlConnection = null;

try

{
URL tmpURL = new URL(URLString);
urlConnection = tmpURL.openConnection();
return urlConnection;

}

catch(Exception e)

{
System.out.println ("cannot create URL object");
System.exit(1l);

}

return urlConnection;

277

public void show() throws JVistaException

{
this.jvista.showReport("", true);
}
public void reportLoadComplete()
{
System.out.println("In reportLoad Complete");
}
public void reportPrintComplete()
{
System.out.println("In report Print ");
}
public void reportPageChanged(int previousPage,int currentPage)
{
System.out.println("In reportPage Changed");
}
public void onError(JVistaException exception)
{
System.out.println("In error ");
}
public void viewerInitialized()
{
System.out.println("In viewer loaded");
this.frame.getContentPane().add(this.jvista);
this.frame.getContentPane().setSize(this.jvista.getPreferredSize());
this.frame.setSize(this.jvista.getPreferredSize());
}
public static void main(String args[]) throws Exception
{

//set the look and feel
UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

//create the JVistaTest object

JVistaTest jVistaTest = new JVistaTest();

jVistaTest.initialize();

//show the report
jVistaTest.show();

278

7 Appendix-1

Integration Flow

Integrated Deployment Scenario

B

Figure 6: Integrating Intellicus

Single Sign-on
To achieve Single Sign-on, the following need to be considered:

1. Synchronizing users

e Intellicus provides JAVA/HTTP APIs to manage users from a host application
e You can choose to:
e Create/Edit users in Intellicus when users are created/ edited in host application OR
e Check and Create/Edit users in Intellicus whenever a user logs in to host application
e User Mapping
e Theusersin Intellicus shall be shadow users (without storing their passwords in Intellicus
system)
e Each user will map one-to-one with host application user

279

2. Passing Credentials when navigating to Reports

When user navigates from host application to Intellicus the credentials can be passed as:

e Hidden HTTP Parameter

3
POST or GET /
having hidden
Haost

Appiication HTTP controls Lot
in request

e Session Variables (Only in case of same web server)

-
Host. Session =]

Hested in Same Web Sarver

3. Authentication

e Following mechanisms can be used to verify passed credentials again in Intellicus
e (Call Back
e You can Plug-in your custom code to authenticate passed Userid (loginname), Password
(password), Orgid(Customerid) from your database.
e External authenticators
e You can configure external authenticators such as LDAP

Data Filtering

e Userld and Customerld are now available with Intellicus as passed from host application
e Datafiltering at User level or Customer level can be achieved by:

e Each Report SQL will be designed using parameters (place holders) in the WHERE clause to
filter data

Example: (Select ... where Tab1l.CustomerlD=<%Customerld%>
e Intellicus Report Server will replace the parameter values just before SQL execution

280

Host Application passes
credentials (Customer |d)
andior hidden business
parameter

L 4

Host
Application

Intellicus

Intellicus replaces
Parametervalues
In SQALs and
executesthe final
Query to reporting
databases

Reporting DB

Intellicus Repository

Intellicus repository is a set of few tables in database that stores:

e Report Categories and Reports

Users and Roles

Schedules

Access Rights of users on reports

Intellicus repository also uses file system to store generated report output, which are saved for
future use

Access Rights

e Intellicus manages Users and Roles under Organizations
e AnOrganization logically maps to a Customer of yours
e Rolescan be granted to users
e Access Rights can be assigned to Users and Roles for
e Listing and Running Reports in selected Report Categories

Embedding Report Screens

e Each Intellicus screen is an embeddable web page
e Anyscreen can be embedded into your web application seamlessly using URLs in iFrames
e Youcan also choose to call complete Intellicus portal in new window (bypass login screen)
e Intellicus screens can be customized using style sheets to match your web application’s Ul
standards
e ltisalso possible to navigate back to your application’s screens from reports by designing report
drilldowns accordingly

281

Embedding Report List Screen

psoft Internet Explorer

Fle Edt View Favorites
Qs+ © X @ G Psowr oo @3- 5
portsList.do

dvanc

X! - ¢

Actions > Dashboard > AutoPilot > JLUSEIVEH
What-If Analysis

Admin Setup > Base Setup >

Run Reports

Address | 8] Wttp:/f192.168.144. i
v | Sesrchweb ~ @GetlE7nom ~ o - #- @

Jor il 3
v .Go

Eimsd ~ @Myvmom v Qm; v *Gane; e

English (US)

Language:

Advanced Reports

Report Results

Quick Run

S.No. Report Name
P4

1. %) inventory Value

Fully Integrated Report Listing

Run > > Adhoc eDa e
Advanced Reports

Run

&]

2]
Published Schedule Edit Description
4

@ &

Figure 7: Advanced Report List

282

Embedded Report Screen

i Fle EdR View Favorites Took Hep

em > | ﬂ @ (,\) search i}rm & ‘*.f H L e»y-f 3
: i address (8]

DM FRORDES 80| &
REP 04s - AR Journal with Son[
1 Work Losd
& Financiol F ; i
b 1/2006 ully Integrated Viewer
+ inertory e A/R Journal =
"‘5"""“ e E Toolbar for Post-View Home Care International, USA
» Rep-Finencial Report Operations 3 OBM572004 1o 0B/21/2006 5
:m"ﬂ Financiel | Billing Clerk + Insurance Company by Patient Last Name
» Rep-Financial Therapy Date Of Service Invoice # Pay Date y Write OFf Bad Debts Admin W/0 Other 1
) General Y) Billing Clerk:(DNU) BILLING CYCLE HOLD (MONTHLY BILLING)
*lrwentory Insurance : 10-00001 - HEALTHNOW NY, INC. DMERC A
[*Ioperational Patient Name : jaini, Patient Patient No. : 180000002868
%m APNS 007152000 - OB/M572008 180-20035 040272008 4312
) Ticket Insurance: 10.00001 - HEALTHNOW NY, INC. DMERC A Sub Total : 0,00 4312 0.00 0.00 000
)
@:::,, Insurance : 20-00008 - TEXAS DRUG VENDOR
"3 Tobles Patient Name : Emporacle, Patient Patient No, : 180000002915
- Setwn CHE1 052572008 . 057262008 180.28625 040272008 8.00
3 :“"“’" CHE1 OSR6/2008 - 0572872008 18020626 040272008 110520
Insurance: 20.00008 - TEXAS DRUG VENDOR Sub Total : 0,00 168320 0,00 0.00 0.00
Insurance : 30-00009 - GUIDESTAR
ro—— PatientName: . . . | | Patient No. : 180000002878
1|l 180 [OCE Cidahoma v @ A ¢

Figure 8: Embedded Report Screen

Reporting Flow
Host application can call URL to list report categories
Intellicus will list categories accessible to logged in user

User selects a report category to list reports and gets options to

e Runareport

e Schedule areport

e Email a Report

e View saved reports instance

283

Prompt Report Parameters Screen

Report Parameters ‘

Demo Sales Summary :

Enter Report Start Date™ : Enter Report End Date™ :
lo1/01/2006 | lo1/31/2006 |

Figure 9: Report Parameters Screen

Report Output Screen

Different operations that can be performed from report output (save, email, export in different formats etc.)

Report Parameters ‘ Select X-axis : City, Select Y-axis : Product Type

[&

EEEEEEEEGEC IREFEEE =

Demo Sales Review

Sales Target Mark :| Pooer Average Excellent

City v/s Product Type

Point-and-Shoot

TV Accessories

Chicago 19714.00 5138 00 17384.00 9778 00 _ 9844 00 1204.00 1168.00 572400
Hermosa Beach 368600 199200 1379000 6046 00 19694.00 14532.00 4136 00 743400 1210400

Kuai 6725200 20748.00 76216.00 75762 00 73942.00 34026.00 8952 00 16502 00 26180 00

Lock Haven 17586.00 11768.00 6334400 16934.00 _ 17112.00 481600 5510.00 1240400
Wetropark 55750.00 21004.00 8523000 21596.00 18298.00 26328.00 11360.00 16784.00 26696.00
Montgomery 17590.00 7310.00 15260.00 373200 9862.00 3092.00 2670.00 3166.00 246400
Morgantown 10428 00 5486 00 13838 00 _ 8466 00 8672.00 _ 3008.00 15480 00

New York 26422.00 17926.00 51084.00 17242.00 5644 00 20058.00 2670.00 4980 00 23718.00

Ruston 17786.00 8798.00 35524 00 11316.00 9862 00 1703400 1204.00 5790 00 1101200

Sonora 96732.00 30590.00 153638.00 11152.00 15506.00 5428000 13350.00 20762 00 30894 00
_ 332946.00 133760.00 556156.00 160180.00 T11274.00 210038.00 50362.00 85104.00 167676.00

Figure 10: Report Output Screen

284

Report Scheduling Screen

® Once

Run report on date B at IEl Time Zone v
Recurring

Schedule starts at ~ i Schedule ends at i

Frequency Daily Weekly Monthly

Every Day(s) at A\ ¥ Time Zone v

Delivery Operations

[} Email [Print [| Upload [+ Publish || Skip delivery on no data

Save In Fa, ¥ yser's Waorking Folder Report Format | ACROBAT PDF v

File Name |‘J Suffix Timestamp Format v [Delivery Options
® public O private pagination:
Valid Upto |# Deliver Zipped File
O After Generation
End of this v
Date E

Report Parameters

Mo Parameters

Figure 11: Report Scheduling Screen

285

Saving Report Output Screen

Publish
Report Format: | "| Options -
Save In: Demo .
Report Name: | |
Access: () Public () Private
Expires on: |MM/dd/yyyy HH:mm:ss |

(Blank date stands for never expires)

Add Comment m

Figure 12: Save Report Output Screen

Cancel

286

Report Emailing Screen

Send Report As:

Report Format:
Save In:

To:

Cc:

Subject:

Message:

Attachment () Link

L4

HTML ¥ | Options -

Hello,

 You have received this
automated email to let you know that report
<%MEMNU_MAME%: > has been
generated.Please click the following link to
view the report in <%%REPORT_FORMAT%0 >

format. <BR=
SO NAWEN REDOBT | Thilk 0~ ~BR - ~BR~ Thic

-

A

.ﬂ. Cancel

Figure 13: Email Report Output Screen

287

8 Appendix-2

SYSTEM_PRIVILEGES

0 Category Setup

1 Scheduler

2 Report Designer

3 IM Support

5 Data Admin

6 Deploy Report Bundler

7 Category Setup Global
8 Scheduler Global
9 Data Admin Global

10 Adhoc Report Designer

11 Widget Designer
12 Generate Link

13 Generate Link Global

288

ACCESSRIGHTS

0 Publish Output

1 Publish Output Secured

2 Save Reports

3 Save Reports Secured

4 Export Reports

5 Export Reports Secured

6 Print Reports

7 Print Reports Secured

8 Print Reports at Server
9 Print Reports at Server Secured

10 Scheduled Reports

11 Publish Layout

12 Run Reports

13 Run Reports Secured

14 All Run Privileges

15 All Run Privileges Secured

16 Email Report

17 Email Report Secured

289

18 FTP Reports

19 FTP Reports Secured

20 Publish Scheduled Reports

21 Publish Scheduled Reports at Server

22 Email Scheduled Reports

23 FTP Scheduled Reports

290

	1 Intellicus Integration Architectural Options
	Integration Architectural Options
	Option-1: Intellicus Running on Separate Webserver
	Use cases (As numbered in the diagram)
	Deploying JSPs and SERVLETs
	Step 1- Install Intellicus Report Server
	Step 2- Configure HTTP port number
	Step 3- Setting Intellicus User Context

	Option-2: Intellicus Running inside a Host Application
	Use cases
	Steps to deploy Intellicus as a Embedded Application inside Host Application
	1. Copy “intellicus” web application to the Host Application
	2. Copy library files of intellicus
	3. Modify the contents of “web.xml’
	4. Modify the ReportClient.properties file
	5. Modify the contents of “ReportEngine.properties”
	6. Access Intellicus from hostapp application

	HTML Look and Feel

	2 HTTP API
	Prerequisite
	Method to get a token for Single Sign-On
	Method to access HTTP API
	CategoryList.jsp
	ReportListForCategory.jsp
	For getting list of all the reports in the category
	For getting list of Standards reports in the category
	For getting list of Adhoc reports in the category

	RepositoryExplorer.jsp
	InteraController.jsp
	Run-time System parameters page
	Input parameters page
	For running standard report
	For running Adhoc report
	For running Adhoc report in pdf format

	OlapViewer.jsp
	SavedReportList.jsp
	Dashboard
	DashboardViewer.jsp
	WidgetDesigner.jsp
	DashboardPreferences.jsp

	AdhocWizard.jsp
	SelectAdhocSource.jsp
	AdhocVisualizer.jsp
	QueryObjectList.jsp
	ParameterObjectList.jsp
	PrintSettingList.jsp
	Preferences.jsp

	3 RESTful API
	Rest Integration Architecture
	Response Code
	Accessing the REST API
	URL
	Authentication
	Organization
	Category
	User
	Role
	Dashboard
	DashboardWidget
	Report
	Database connection Management
	Report Object
	Schedule
	Task
	ScheduleJob
	Entities
	OLAP
	ReportExecution

	4 Java API
	Java Doc
	Mandatory Step to Use Java APIs
	Initialize Report Client
	Configuration
	Import
	Init

	Initialize Requestor User context
	Requestor User
	Import
	UserInfo

	Use Cases
	User Management Actions
	Import
	Organization
	GetOrgById
	Get Users list for Organization
	Get Organization List
	Add Organization
	Modify Organization
	Delete Organization
	Assign Category Privileges to Organization
	Assign Connection Privileges to Organization

	User
	Get User By Id
	Add User (Create User)
	Assign Category Privileges to User
	Assign Report Privileges To User
	Assign Entity Privileges to User
	Assign System Privileges to the User
	Assign Role To User
	Assign Roles To User
	Revoke Role from User
	User Mapping
	Delete User

	Role
	Get Role List
	Create Role (Add Role)
	Assign Category Privileges To Role
	Assign Report Privileges to Role
	Delete Role

	Report Management Actions
	Categories
	Import
	Get Category List
	Add a new Category
	Delete Category
	GetSubCategories

	Report Operations
	Import
	Run Report
	Get the list of Published Reports of a particular report

	Report Layout Management
	Import
	GetAllReportList
	MoveReport
	Get Report List For Category
	Get Saved Report List
	Add Report Layout to Category
	Copy Report
	Get Report Details

	Mass Operations
	Import
	Copy Entities
	Delete Entities

	Dashboards
	Import
	Get Dashboard Details
	Get Dashboard List
	Get Dashboard Widget List
	Get Dashboard Widgets for Category
	Delete Dashboard
	Get Dashboard Preferences

	Schedules
	Get the list of scheduled jobs
	Create a Schedule Job
	Delete Schedule Job

	Cab Deployment
	Upload and Deploy cab/irb file

	Report Object
	Query Object
	Attribute of Query Objects:
	Add Report Object
	Add Query Object from CSV Source
	Get Query Object by Name
	Get Report Object List
	Get Parameter Object List
	Delete Report Object
	Replace Query Object

	OLAP
	Import
	Cube Object
	AddCube
	Get Dimensions List
	Delete Cube Object
	Build Cube Object
	Get Build Status
	Cancel Build

	Database connection Management
	Get the list of all the DB connections present in the Intellicus Repository
	Create DB Connection in the Intellicus Repository
	Create DB Connection for File Data Source
	Delete DB Connection from the Intellicus Repository

	Audit Log
	Get Audit Detail
	Delete Audit Detail

	Data Masking
	Save Dtaa Masking
	Get Masked Columns

	ReporServerProperty
	GetReportEnginePortAndIP
	GetReportServerProperty
	SetReportServerProperty

	ReporServerConnectivity
	TestServerConnectivity

	User Preferences
	GetUserPreferences
	setUserPreferences

	5 Callback API
	SQL Filter
	Configuration
	Configuring SQL Filtering Callback Options
	Callback SQL Filtering

	Authentication Check
	Configuring Authentication Check
	Callback Authentication Check

	Callback Events
	General configuration
	Report Events
	Configuration
	BEFORE REPORT EXECUTION
	AFTER REPORT EXECUTION
	BEFORE URL ASSIGN
	BEFORE PARAMETERS INITIALIZATION

	User Mapping
	Connection Events
	Configuration
	BEFORE CONNECTION GET
	AFTER CONNECTION GET
	BEFORE CONNECTION SUBMIT

	UMM Events
	Configuration
	AFTER ORGANIZATION CREATE
	AFTER ROLE CREATE
	BEFORE USER CREATE
	AFTER USER CREATE
	BEFORE USER MODIFY
	AFTER USER MODIFY

	REPORTMGMTEVENTS
	Configuration
	AFTER CATEGORY ADD
	AFTER CATEGORY MODIFY
	AFTER CATEGORY DELETE
	AFTER REPORT ADD
	AFTER REPORT MODIFY
	AFTER REPORT DELETE

	ROMGMTEVENTS
	Configuration
	AFTER REPORTOBJECT ADD
	AFTER REPORTOBJECTMODIFY
	AFTER REPORTOBJECT DELETE

	DynamicQOEvents
	Configuration
	Get Dynamic Columns
	Get External Query Object

	6 JVista API
	Standard API
	Methods
	SetReportProperties
	Syntax
	Params

	SetTempDirectory
	Syntax
	Params

	SetURL
	Syntax
	Params

	setConfigProperty
	Syntax
	Params

	setPageChunkSize
	Syntax
	Params

	setHostName
	Syntax
	Params

	setHostPort
	Syntax
	Params

	setReport
	Syntax
	Params

	SetURL
	Syntax
	Params

	Initialize
	Syntax
	Params

	ShowReport
	Syntax
	Params

	Events
	public void onReportLoadComplete()
	public void onReportPrintComplete()
	public void onReportPageChanged(int previousPage , int currentPage)
	public void onError (JVistaException e)
	public void viewerInitialized(void)

	Code Sample

	7 Appendix-1
	Integration Flow
	Integrated Deployment Scenario
	Single Sign-on
	1. Synchronizing users
	2. Passing Credentials when navigating to Reports
	3. Authentication

	Data Filtering
	Intellicus Repository
	Access Rights
	Embedding Report Screens
	Embedding Report List Screen
	Embedded Report Screen
	Reporting Flow
	Prompt Report Parameters Screen
	Report Output Screen
	Report Scheduling Screen
	Saving Report Output Screen
	Report Emailing Screen

	8 Appendix-2

